Breast cancer is a heterogeneous disease characterized by molecular complexity. This research utilized three genetic expression profiles—gene expression, deoxyribonucleic acid (DNA) methylation, and micro ribonucleic acid (miRNA) expression—to deepen the understanding of breast cancer biology and contribute to the development of a reliable survival rate prediction model. During the preprocessing phase, principal component analysis (PCA) was applied to reduce the dimensionality of each dataset before computing consensus features across the three omics datasets. By integrating these datasets with the consensus features, the model's ability to uncover deep connections within the data was significantly improved. The proposed multimodal deep learning multigenetic features (MDL-MG) architecture incorporates a custom attention mechanism (CAM), bidirectional long short-term memory (BLSTM), and convolutional neural networks (CNNs). Additionally, the model was optimized to handle contrastive loss by extracting distinguishing features using a Siamese network (SN) architecture with a Euclidean distance metric. To assess the effectiveness of this approach, various evaluation metrics were applied to the cancer genome atlas (TCGA-BREAST) dataset. The model achieved 100% accuracy and demonstrated improvements in recall (16.2%), area under the curve (AUC) (29.3%), and precision (10.4%) while reducing complexity. These results highlight the model's efficacy in accurately predicting cancer survival rates.
Breast cancer is the most common cancer among women over the world. To reducing reoccurrence and mortality rates, adjuvant hormonal therapy (AHT) is used for a long period. The major barrier to the effectiveness of the treatment is adherence. Adherence to medicines among patients is challenging. Patient beliefs in medications can be positively or negatively correlated to adherence. Objectives: To investigate the extent of adherence and factors affecting adherence, as well as to investigate the association between beliefs and adherence in women with breast cancer taking AHT. Method: A cross-sectional study included 124 Iraqi women with breast cancer recruited from Middle Euphrates
... Show MoreBackground: Breast cancer (BC) is the most widespread cancer among women worldwide. Its incidence and mortality rates have risen in the previous three decades as a result of changes in risk factor profiles, improved cancer registry, and cancer detection. Objective: The study's goals were to establish if Ki-67 could be used as a potential marker in serum of cancer disease patients as well as their interaction with vascular endothelial growth factor (VEGF) and ES in various stages of breast cancer to assess their function in the progression of BC. Materials and Methods: The levels of Ki-67, VEGF and endostatin (ES) in serum were assessed by commercial enzyme linked immunosorbent assay (ELISA) kits in 60 women diagnosed with breast cancer
... Show MoreBackground : Breast cancer is the most common cancer of
women. When breast cancer is detected and treated early,
the chances for survival are better. Surgery is the most
important treatment for non-metastatic breast cancer.
Al-Kindy Col Med J 2008 Vol.5(1) 40 Original Article
Objectives : The aim of this study is to review different
clinical presentation and to evaluate types of surgical
procedures and complications in treatment of nonmetastatic breast cancer.
Method : During the period from Jun 1998 to May 2005,
93 patients with non-metastatic breast cancer were
diagnosed and treated surgically in 2 hospitals in Baghdad (
Hammad Shihab military hospital and Al-Kindy teaching
hospital).
Results : Wo
Diabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed
... Show MoreObjective This research investigates Breast Cancer real data for Iraqi women, these data are acquired manually from several Iraqi Hospitals of early detection for Breast Cancer. Data mining techniques are used to discover the hidden knowledge, unexpected patterns, and new rules from the dataset, which implies a large number of attributes. Methods Data mining techniques manipulate the redundant or simply irrelevant attributes to discover interesting patterns. However, the dataset is processed via Weka (The Waikato Environment for Knowledge Analysis) platform. The OneR technique is used as a machine learning classifier to evaluate the attribute worthy according to the class value. Results The evaluation is performed using
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for