Preferred Language
Articles
/
IBjh8JUBVTCNdQwCx4CP
Effect of Elevated Temperature on Microstructure and Mechanical Properties of Hot-Rolled Steel
...Show More Authors

The mechanical properties and microstructure of hot-rolled steel are critical in determining its performance in industrial applications, particularly when exposed to elevated temperatures. This study examines the effects of varying temperatures and soaking times on these properties through a series of controlled experiments. The primary objective was to optimize the key response parameters, including tensile strength, yield strength, and elongation, by analyzing the influence of temperature and time. A full factorial design approach was used, applying the desirability function theory to explore all possible combinations and identify optimal processing conditions. The experimental results showed that the soaking time played a critical role, significantly influencing the mechanical properties with an impact ratio of 62%. The microstructural analysis displayed that higher temperatures and longer soaking times resulted in the formation of coarser ferrite and pearlite grains, contributing to a decrease in strength and an increase in ductility. The optimum process condition - 650 °C for 60 min - produced the highest values for tensile strength (400.32 MPa), elongation (36.78%) and yield strength (288.52 MPa). The study also highlighted the temperature-dependent nature of the mechanical behavior of hot-rolled steel. While tensile strength and yield strength initially increase with temperature, prolonged exposure, particularly at 600 °C and 750 °C, results in significant grain coarsening and a corresponding degradation of these properties. Conversely, elongation improves at moderate temperatures (150 °C to 300 °C) but decreases with prolonged exposure, especially at higher temperatures. These findings underscore the importance of precise control of thermal processing parameters to optimize the mechanical properties of hot-rolled steel. The findings offer significant insights that can be leveraged to optimize material performance in industrial applications, where thermal exposure is a critical consideration.

Scopus Crossref
View Publication
Publication Date
Thu Mar 01 2018
Journal Name
Materials Today Communications
Improved mechanical properties of sol-gel derived ITO thin films via Ag doping
...Show More Authors

View Publication
Scopus (20)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Iraqi Journal Of Physics
A Study of the mechanical properties of aluminum composite materials prepared by atomization process
...Show More Authors

Steel fiber aluminum matrix composites were prepared by atomization technique. Different air atomization conditions were considered; which were atomization pressure and distance between sample and nozzle. Tensile stress properties were studied. XRF and XRD techniques were used to study the primary compositions and the structure of the raw materials and the atomized products. The tensile results showed that the best reported tensile strength observed for an atomization pressure equal to 4 mbar and sample to nozzle distance equal to 12 cm. Young modulus results showed that the best result occurred with an air atomization pressure equal to 8 mbar and sample to nozzle distance equal to 16cm

View Publication Preview PDF
Publication Date
Wed Aug 29 2018
Journal Name
Biomedical And Pharmacology Journal
Comparison of Some Mechanical and Physical Properties of three Types of Impression Materials with Different Dental Implant Angulations
...Show More Authors

Choosing an appropriate impression material is a challenge for many dentists, yet an essential component to provide an excellent clinical outcome and improve productivity and profit. The purpose of present study was to compare wettability, tear strength and dimensional accuracy of three elastomeric impression materials, with the same consistencies (light-body). Three commercially available light body consistency and regular set 3M ESPE Express polyvinylsiloxane (PVS), 3M ESPE Permadyne polyether (PE), and Identium (ID), impression materials were comparedTear strength test, contact angle test and linear dimensional accuracy were evaluated for three elastic impression material. Among the three experimental groups PE impression materia

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Wed May 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
Effect of sustainable palm fiber on high strength concrete properties
...Show More Authors
Abstract<p>Date palm fiber is one of the common wastes available in the M. E. countries essentially Iraq. The aim of search to investigate the performance and effects of fiber date palm on the mechanical properties of high strength concrete, this fiber was used in three ratio 2, 4 and 6 % by vol. of concrete at ages of (7, 28, 90) days. Results demonstrated improvement in the compressive strength increased 19.2 %, 23.6%, 24.9 % for 2%, 4%, 6% of fiber respectively at age 28 days. Flexural strength increases 47.6%, 66.2%, 93.8% form (2,4,6) % of fiber respectively at age 28 days. Density increase about 0.41%, 0, 61 % 0.69 % for (2,4,6) % of fiber respectively at age 28. Absorption water decrease </p> ... Show More
View Publication
Crossref (6)
Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
Investigating the effect of cartographic properties on updating cadastral maps
...Show More Authors
Abstract<p>Cadastral maps are the main documents of ownership and plots of land, as it contribute to preserving the property rights of individuals and institutions. It indicates the size and shape of each parcel and reveals geographic relationships that affect property value. The Iraqi cadastral maps are in old coordinate system AL-nahrwan 1934 and lambert conformal conic projection. Therefore these maps are old and unfit for use. The main objective of this paper is to investigate the effect of cartographic properties on updating cadastral maps. This depends on studying the effect of conversion the projection and the datum of the cadastral maps of the study area from (datum: nahrwan34, projection: lambert confo</p> ... Show More
View Publication
Crossref
Publication Date
Sun Sep 01 2013
Journal Name
Baghdad Science Journal
Determination The Effect of ZnO on Iraqi Bentonite Surface Properties
...Show More Authors

Bentonite is widely used in industrial applications. The present study reports the effect of adding different weights of ZnO to the Iraqi bentonite, on surface area, pore volume and real density. These surface properties were evaluated for pure and modified bentonite. The modification was made by adding different ZnO weights such as; ( 0.5%, 1%, 5%, 10% ). The effect of heat exposing for all modified clay samples at 500 ?C have been also evaluated. The results show that the addition of 0.5% ZnO leads to increase the surface area percentage about 36%, increase pore volume percentage about 5.48% and increase the real density percentage about 27.116%. When the samples exposed to 500 ?C, their surface area and pore volumes have been decreased a

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Aip Conference Proceedings
Effect of gamma irradiation on the TlBa2Ca2Cu3O9-δ superconducting properties
...Show More Authors

View Publication
Scopus (13)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Engineering
Comparison the Physical and Mechanical Properties of Composite Materials (Al /SiC and Al/ B4C) Produced by Powder Technology
...Show More Authors

In this investigation, metal matrix composites (MMCs) were manufactured by using powder technology. Aluminum 6061 is reinforced with two different ceramics particles (SiC and B4C) with different volume fractions as (3, 6, 9 and 12 wt. %). The most important applications of particulate reinforcement of aluminum matrix are: Pistons, Connecting rods etc. The specimens were prepared by using aluminum powder with 150 µm in particle size and SiC, B4C powder with 200 µm in particle size. The chosen powders were mixed by using planetary mixing setup at 250 rpm for 4hr.with zinc stearate as an activator material in steel ball milling. After mixing process the powders were compacted by hydraulic

... Show More
View Publication Preview PDF
Publication Date
Sun Apr 22 2018
Journal Name
Al-nahrain Journal For Engineering Sciences
Numerical Analysis of the Effect of Scanning Speed on the Temperature Field Distribution for Laser Heat Treatment Applications
...Show More Authors

One of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed May 29 2019
Journal Name
Iraqi Journal Of Physics
Effect of thickness on structural properties of BixSb2-xTe3 thin films
...Show More Authors

BixSb2-xTe3 alloys with different ratios of Bi (x=0, 0.1, 0.3, 0.5, and 2) have been prepared, Thin films of these alloys were prepared using thermal evaporation method under vacuum of 10-5 Torr on glass substrates at room temperature with different deposition rate (0.16, 0.5, 0.83) nm/sec for thickness (100, 300, 500) respectively. The X–ray diffraction measurements for BixSb2-xTe3 bulk and thin films indicate the polycrystalline structure with a strong intensity of peak of plane (015) preferred orientation with additional peaks, (0015) and (1010 ) reflections planes, which is meaning that all films present a very good texture along the (015) plane axis at different intensities for each thin film for different thickness. AFM measureme

... Show More
View Publication Preview PDF
Crossref (1)
Crossref