The mechanical properties and microstructure of hot-rolled steel are critical in determining its performance in industrial applications, particularly when exposed to elevated temperatures. This study examines the effects of varying temperatures and soaking times on these properties through a series of controlled experiments. The primary objective was to optimize the key response parameters, including tensile strength, yield strength, and elongation, by analyzing the influence of temperature and time. A full factorial design approach was used, applying the desirability function theory to explore all possible combinations and identify optimal processing conditions. The experimental results showed that the soaking time played a critical role, significantly influencing the mechanical properties with an impact ratio of 62%. The microstructural analysis displayed that higher temperatures and longer soaking times resulted in the formation of coarser ferrite and pearlite grains, contributing to a decrease in strength and an increase in ductility. The optimum process condition - 650 °C for 60 min - produced the highest values for tensile strength (400.32 MPa), elongation (36.78%) and yield strength (288.52 MPa). The study also highlighted the temperature-dependent nature of the mechanical behavior of hot-rolled steel. While tensile strength and yield strength initially increase with temperature, prolonged exposure, particularly at 600 °C and 750 °C, results in significant grain coarsening and a corresponding degradation of these properties. Conversely, elongation improves at moderate temperatures (150 °C to 300 °C) but decreases with prolonged exposure, especially at higher temperatures. These findings underscore the importance of precise control of thermal processing parameters to optimize the mechanical properties of hot-rolled steel. The findings offer significant insights that can be leveraged to optimize material performance in industrial applications, where thermal exposure is a critical consideration.
This research includes the synthesis of some new N-Aroyl-N \ -Aryl thiourea derivatives namely: N-benzoyl-N \ -(p-aminophenyl) thiourea (STU1), N-benzoyl-N \ -(thiazole) thiourea (STU2), N-acetyl-N ` -(dibenzyl) thiourea (STU3). The series substituted thiourea derivatives were prepared from reaction of acids with thionyl chloride then treating the resulted with potassium thiocyanate to affored the corresponding N-Aroyl isothiocyanates which direct reaction with primary and secondary aryl amines, The purity of the synthesized compounds were checked by measuring the melting point and Thin Layer Chromatography (TLC) and their structure, were identified by spectral methods [FTIR,1H-NMR and 13C-NMR].These compounds were investigated as a
... Show MoreThe present paper deals with prepared of ternary Se80-xTe20Gex system alloys and thin films. The XRD analysis improved that the amorphous structure of alloys and thin films for ternary Se80-xTe20Gex (at x=10and 20at.%Ge) which prepared by thermal evaporation techniques with thickness 250 nm. The optical energy gap measurements show that the optical energy gap decreases with increasing of (Ge) content from (1.7 to 1.47 eV)
It is found that the optical constants, such as refractive
index ,extinction coefficient, real and imaginary dielectric
constant are non systematic with increasing of Ge contents
and annealing temperatures
In this research PbS thin film have been prepared by chemical bath deposition technique (CBD).The PbS film with thickness of (1-1.5)μm was thermally treated at temperature of 100°C for 4 hours. Some Structural characteristics was studied by using X-ray diffraction (XRD)and optical microscope photograph some of chemical gas sensing measurements were carried out ,it shown that the sensitivity of (CO2) gas depend on the grain Size and deposition substrate. The grain size of PbS film deposited on on glass closed to 21.4 nm while 37.97nm for Si substrate. The result of current-voltage characterization shwon the sensitivity of prepared film deposited on Si better than film on glass.
In this research was study the effect of increasing the number of layers of the semiconductor films as PbS on the average grain sizes and illustrate the relationship between the increase in the average grain size and thickness of the membrane, and membrane was prepared using the easy and simple and does not need the complexity of which is that the chemical bath , and from an X-ray diffraction found that the material and the installation of a random cubic and when increasing the number of layers deposited note the emergence of a number of vertices of a substance and PbS at different levels but the level is more severe (200) as well as the value is calculated optical energy gap and found to be not affected by increase thickness and from th
... Show MoreLinear and nonlinear optical properties of epoxy/ Al2O3 nanocomposites system were studied for epoxy neat and (0.5, 1.5, 3, and 5) % Al2O3 nanocomposites.The band gap of epoxy and its nanocomposites was obtained at these weight ratios. Nonlinear optical properties experiments were performed using Q-switched Nd:YAG laser z-scan system.These experiments were carried out for different parameters: wavelengths (1064 nm and 532 nm), laser intensities (0.530, 0.679, and 0.772) GW/cm2 and weight ratio of Al2O3 nanocomposites. The results showed that the band gaps were decreased with increasing the weight ratio of nanoalumina except at 5wt% and the nonlinear refractive index coefficient is directly proportional to the incident intensities while o
... Show MoreLithium doped Nickel-Zinc ferrite material with chemical formula Ni0.9−2x Zn0.1LixFe2+xO4, where x is the ratio of lithium ions Li+ (x = 0, 0.01, 0.02, 0.03 and 0.04) prepared by using sol-gel auto combustion technique. X-ray diffraction results showed that the material have pure cubic spinal structure with space group Fd-3m. The experimental values of the lattice constant (aexp) were decreased from 8.39 to 8.35 nm with doped Li ions. It was found that the decreasing of the crystallite size with addition of lithium ions concentration. The radius of tetrahedral (rtet) and octahedral (roct) site were computed from cation distribution. SEM images have been taken to show the morphology of compound. The dielectric parameters [dissipation fa
... Show MoreGypsum Plaster is an important building materials, and because of the availabilty of its raw materials. In this research the effect of various additives on the properties of plaster was studied , like Polyvinyl Acetate, Furfural, Fumed Silica at different rate of addition and two types of fibers, Carbon Fiber and Polypropylene Fiber to the plaster at a different volumetric rate. It was found that after analysis of the results the use of Furfural as an additive to plaster by 2.5% is the optimum ratio of addition to that it improved the flexural Strength by 3.18%.
When using Polyvinyl Acetate it was found that the ratio of the additive 2% is the optimum ratio of addition to the plaster, because it improved the value of the flexural stre