Preferred Language
Articles
/
IBjh8JUBVTCNdQwCx4CP
Effect of Elevated Temperature on Microstructure and Mechanical Properties of Hot-Rolled Steel
...Show More Authors

The mechanical properties and microstructure of hot-rolled steel are critical in determining its performance in industrial applications, particularly when exposed to elevated temperatures. This study examines the effects of varying temperatures and soaking times on these properties through a series of controlled experiments. The primary objective was to optimize the key response parameters, including tensile strength, yield strength, and elongation, by analyzing the influence of temperature and time. A full factorial design approach was used, applying the desirability function theory to explore all possible combinations and identify optimal processing conditions. The experimental results showed that the soaking time played a critical role, significantly influencing the mechanical properties with an impact ratio of 62%. The microstructural analysis displayed that higher temperatures and longer soaking times resulted in the formation of coarser ferrite and pearlite grains, contributing to a decrease in strength and an increase in ductility. The optimum process condition - 650 °C for 60 min - produced the highest values for tensile strength (400.32 MPa), elongation (36.78%) and yield strength (288.52 MPa). The study also highlighted the temperature-dependent nature of the mechanical behavior of hot-rolled steel. While tensile strength and yield strength initially increase with temperature, prolonged exposure, particularly at 600 °C and 750 °C, results in significant grain coarsening and a corresponding degradation of these properties. Conversely, elongation improves at moderate temperatures (150 °C to 300 °C) but decreases with prolonged exposure, especially at higher temperatures. These findings underscore the importance of precise control of thermal processing parameters to optimize the mechanical properties of hot-rolled steel. The findings offer significant insights that can be leveraged to optimize material performance in industrial applications, where thermal exposure is a critical consideration.

Scopus Crossref
View Publication
Publication Date
Fri Jul 01 2016
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
STUDY THE EFFECT OF DIFFERENT TYPES OF STRESS ON SOME BLOOD CONSTITUENTS AND PLASMA BIOCHAMICALS IN MALE RATS
...Show More Authors

    The objective of this work was to determine and compare the physiological changes in some: blood components (packed cell volume and hemoglobin) and plasma biochemical parameters (glucose, total protein, albumin, cholesterol and triglycerides) under 3 day of different types of stress: water deprivation, starvation, overcrowding and handling stress. Twenty five male Wister rats weighted 100-120 gm, were divided randomly into five groups: control, water deprivation, starvation, overcrowding and handling stress. On the third day of stress the animals anesthetized for blood collection; the results of blood component revealed a significant increase in PCV and a significant decrease in Hb of water deprivation group and starva

... Show More
View Publication Preview PDF
Publication Date
Tue Oct 02 2018
Journal Name
Iraqi Journal Of Physics
Study of effect acidic solution (HCl) and (EP/Al2O3 & EP/ TiO2) hybrid on thermal conductivity of epoxy resin.
...Show More Authors

This research studies the effect of adding micro, nano and hybrid by ratio (1:1) of (Al2O3,TiO2) to epoxy resin on thermal conductivity before and after immersion in HCl acid for (14 day) with normality (0.3 N) at weight fraction (0.02, 0.04, 0.06, 0.08) and thickness (6mm). The results of thermal conductivity reveled that epoxy reinforced by (Al2O3) and mixture (TiO2+Al2O3) increases with increasing the weight fraction, but the thermal conductivity (k) a values for micro and Nano (TiO2) decrease with increasing the weight fraction of reinforced, while the immersion in acidic solution (HCl) that the (k) values after immersion more than the value in before immersion.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
Effect of SiC particles and water absorption on thermal conductivity of epoxy reinforcement by (bi-directional) glass fiber
...Show More Authors

In this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particl

... Show More
View Publication Preview PDF
Publication Date
Mon Feb 01 2016
Journal Name
Journal Of Engineering
The Effect of Cement and Admixture Types on the Resistance of High Performance Concrete to Internal Sulphate Attack
...Show More Authors

This work is concerned with the study of the effect of cement types, particularly OPC and SRPC, which are the main cement types manufactured in Iraq. In addition, study the effect of mineral admixtures, which are HRM and SF on the resistance of high performance concrete (HPC) to internal sulphate attack. The HRM is used at (10%) and SF is used at (8 and 10)% as a partial replacement by weight of cement for both types. The percentages of sulphate investigated are (1,2 and 3)% by adding natural gypsum as a partial replacement by weight of fine aggregate. The tests carried out in this work are: compressive strength, flexural strength, ultrasonic pulse velocity, and density at the age of 7, 28, 90 and 120 days.

The r

... Show More
View Publication Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Effect of Design Parameters and Support Conditions on Natural Frequency of Pipe Excited by a Turbulent Internal Flow
...Show More Authors

In this study, the effect of design parameters such as pipe diameter, pipe wall thickness, pipe material and the effect of fluid velocity on the natural frequency of fluid-structure interaction in straight pipe conveying fully developed turbulent flow were investigate numerically,analytically and experimentally. Also the effect of support conditions, simply-simply and clamped-clamped was investigated. Experimentally, pipe vibrations were characterized by accelerometer mounted on the pipe wall. The natural frequencies of vibration were analyzed by using Fast Fourier Transformer (FFT). Five test sections of two different pipe diameters of 76.2
mm and 50.8 mm with two pipe thicknesses of 3.7 mm and 2.4 mm and two pipe materials,stainles

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 16 2026
Journal Name
Journal Of Physical Education
The Effect of Breathing Exercises on Relation and Self – Talk on Developing Ambition Level According to VTS – Sport and Achievement in Long Distance Runners
...Show More Authors

View Publication
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Mechanical Engineering
Corrosion Resistance Enhancement for Low Carbon Steel by Gas Phase Coating
...Show More Authors

Corrosion Resistance Enhancement for low carbon steel is very important to extend its life service, the coating process is one of the methods which can using to achieve this, and it's the most important in surface treatments to improve the properties of metals and alloys surfaces such as corrosion resistance. In this work, low carbon steel was nitrided and coated with nano zinc using gas phase coating technical, to enhance the resistance of corrosion. The process included adding two layers. The first, a nitride layer, was added by precipitating nitrogen (N) gas, and the second, a zinc (Zn) layer, was added by precipitating Zn. The process of precipitating was carried out at different periods (5, 10, and 15 minutes). Scan electron mi

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
Load Distribution Factors For Horizontally Curved Composite Concrete-Steel Girder Bridges
...Show More Authors

This paper focuses on Load distribution factors for horizontally curved composite concrete-steel girder bridges. The finite-element analysis software“SAP2000” is used to examine the key parameters that can influence the distribution factors for horizontally curved composite steel
girders. A parametric study is conducted to study the load distribution characteristics of such bridge system due to dead loading and AASHTO truck loading using finite elements method. The key parameters considered in this study are: span-to-radius of curvature ratio, span length, number of girders, girders spacing, number of lanes, and truck loading conditions. The results have shown that the curvature is the most critical factor which plays an important

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
The Effective Width in Composite Steel Concrete Beams at Ultimate Loads
...Show More Authors

A composite section is made up of a concrete slab attached to a steel beam by means of shear connectors. Under positive and negative bending moment, part of the slab will act as a flange of the beam, resisting the longitudinal compression or tension force. When the spacing between girders becomes large, it is evident that the simple beam theory does not strictly apply because the longitudinal stress in the flange will vary with distance from the girder web, the flange being more highly stressed over the web than in the extremities. This phenomenon is termed "shear lag". In this paper, a nonlinear three-dimensional finite element analysis is employed to evaluate and determine the actual effective slab width of the composite steel-concrete

... Show More
View Publication
Crossref (9)
Crossref
Publication Date
Wed Jun 24 2020
Journal Name
Journal Of Engineering
Using Steel Slag for Stabilizing Clayey Soil in Sulaimani City-Iraq
...Show More Authors

The clayey soils have the capability to swell and shrink with the variation in moisture content. Soil stabilization is a well-known technique, which is implemented to improve the geotechnical properties of soils. The massive quantities of waste materials are resulting from modern industry methods create disposal hazards in addition to environmental problems. The steel industry has a waste that can be used with low strength and weak engineering properties soils. This study is carried out to evaluate the effect of steel slag (SS) as a by-product of the geotechnical properties of clayey soil. A series of laboratory tests were conducted on natural and stabilized soils. SS was added by 0, 2.5, 5, 10, 15, and 20% to the soil.

... Show More
View Publication Preview PDF
Crossref (11)
Crossref