This study rigorously investigates three 3d transition metal carbide (TMC) structures via LDA and GGA approximations. It examines cohesive energy (Ecoh), Vickers hardness (Hv), mechanical stability, and electronic properties. Notably, most 3d TMCs exhibit higher cohesive energy than nitrides, and rs-TiC demonstrates a Vickers hardness of 25.66 GPa, outperforming its nitride counterpart. The study employs theoretical calculations to expedite research, revealing mechanical stability in CrC and MnC (GGA) and CrC (LDA in cc structure), while all 3d TMCs in rs and seven in zb structures show stability. Charge transfer and bonding analysis reveal enhanced covalency along the series, influenced by the interplay between p orbitals of carbon and d orbitals of the metal. Most 3d TMCs exhibit metallic properties, excluding zb-TiC and zb-FeC in all phases. An inverse correlation between elastic constant C44 and electronic states near the Fermi level (EF) emerges, guiding applications and design. This study efficiently uncovers 3d TMC properties, offering insights for applications and design.
This study involves the synthesis of a new class of silicon polymers, designated as P1-P7, derived from dichlorodimethylsilane (DCDMS) in combination with various organic compounds (Schiff bases prepared from different amines and appropriate aldehydes or ketones) [I-V] through condensation polymerization. The structures of all monomers and polymers were characterization by FTIR and 1HNMR spectroscopy (for some polymers). The results of thermogravimetric analysis (TGA) and differential scanning calorimetry DSC test show stable thermal behaviour. Polymers with a higher concentration of aromatic rings in their repeating structural units exhibited a higher temperature for weight loss, indicating increased thermal stability. Thermal meas
... Show MoreHeterocyclic compounds are employed in many applications, and numerous researchers have created liquid crystals by adding heterocyclic to the structures of these molecules. This work includes the synthesis and characterization of new compounds that contain 5H-thiazolo [4,3-b][1,3,4] thiadiazol united in multiple steps, starting with the synthesis of the aldehyde compound [I] by reaction chloro ethyl acetate with 4-hydroxybenzaldehyde in the presence of ethanol and potassium carbonate, followed by reactions with thiosemicarbazide, mercapto acetic acid in sulphuric acid to produce compound [II] then reflux compound [II] with hydrazine hydrate to product compound [III], after that reaction the later compound with nalkoxybenzaldehyde [IV]n and
... Show MoreThis study involves the synthesis of a new class of silicon polymers, designated as P1-P7, derived from dichlorodimethylsilane (DCDMS) in combination with various organic compounds (Schiff bases prepared from different amines and appropriate aldehydes or ketones) [I-V] through condensation polymerization. The structures of all monomers and polymers were characterization by FTIR and 1HNMR spectroscopy (for some polymers). The results of thermogravimetric analysis (TGA) and differential scanning calorimetry DSC test show stable thermal behaviour. Polymers with a higher concentration of aromatic rings in their repeating structural units exhibited a higher temperature for weight loss, indicating increased thermal stability. Thermal meas
... Show MoreAbstract Additive manufacturing has been recently emerged as an adaptable production process that can fundamentally affect traditional manufacturing in the future. Due to its manufacturing strategy, selective laser melting (SLM) is suitable for complicated configurations. Investigating the potential effects of scanning speed and laser power on the porosity, corrosion resistance and hardness of AISI 316L stainless steel produced by SLM is the goal of this work. When compared to rolled stainless steel, the improvement is noticeable. To examine the microstructure of the samples, the optical microscopy (OM), scanning electron microscopy (SEM), and EDX have been utilized. Hardness and tensile strength were us
... Show MoreConventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime
... Show MoreIn this research, the effect of reinforcing epoxy resin composites with a filler derived from chopped agriculture waste from oil palm (OP). Epoxy/OP composites were formed by dispersing (1, 3, 5, and 10 wt%) OP filler using a high-speed mechanical stirrer utilizing a hand lay-up method. The effect of adding zinc oxide (ZnO) nanoparticles, with an average size of 10-30 nm, with different wt% (1,2,3, and 5wt%) to the epoxy/oil palm composite, on the behavior of an epoxy/oil palm composite was studied with different ratios (1,2,3, and 5wt%) and an average size of 10-30 nm. Fourier Transform Infrared (FTIR) spectrometry and mechanical properties (tensile, impact, hardness, and wear rate) were used to examine the composites. The FTIR
... Show MoreIn this research, the effect of adding two different types of reinforcing particles was investigated, which included: nano-zirconia (nano-ZrO2) particles and micro-lignin particles that were added with different volume fractions of 0.5%, 1%, 1.5% and 2% on the mechanical properties of polymer composite materials. They were prepared in this research, as a complete prosthesis and partial denture base materials was prepared, by using cold cure poly methyl methacrylate (PMMA) resin matrix. The composite specimens in this research consist of two groups according to the types of reinforced particles, were prepared by using casting methods, type (Hand Lay-Up) method. The first group consists of PMMA resin reinforced by (nano-ZrO
... Show MoreThe electronic structure of zinc blend indium gallium phosphide In0.5Ga0.5P nanocrystals which have dimension (2-2.8 nm) is investigated using the density functional theory coupled with large unit cell (LUC) for the different size core (8 ,16,54,64) atoms respectively. The investigated properties include total energy, energy gap, conduction band, valence band, cohesive energy, ionicity and density of state etc. as a function of core size and lattice constant. Results show the shape effect of increasing the core size and lattice constant on these electronic properties
An increasing number of emerging contaminants have been detected in surface waters, sediment, soil and ground water in different locations in the world, which is a new environmental challenges need an actual concern for international scientific and legislative communities.
The nonprescription and huge used pharmaceuticals ibuprofen and diclofenac sodium will be focused in this study. New adsorbent developed using cheap inorganic clay material (bentonite) and organic polymer polyureaformaldehyde (PUF), the combination of these two materials gave the surface more roughness with wide active site distribution. Batch adsorption experiment performed to each pharmaceutical individually to determine the optimum separat
... Show More