This study rigorously investigates three 3d transition metal carbide (TMC) structures via LDA and GGA approximations. It examines cohesive energy (Ecoh), Vickers hardness (Hv), mechanical stability, and electronic properties. Notably, most 3d TMCs exhibit higher cohesive energy than nitrides, and rs-TiC demonstrates a Vickers hardness of 25.66 GPa, outperforming its nitride counterpart. The study employs theoretical calculations to expedite research, revealing mechanical stability in CrC and MnC (GGA) and CrC (LDA in cc structure), while all 3d TMCs in rs and seven in zb structures show stability. Charge transfer and bonding analysis reveal enhanced covalency along the series, influenced by the interplay between p orbitals of carbon and d orbitals of the metal. Most 3d TMCs exhibit metallic properties, excluding zb-TiC and zb-FeC in all phases. An inverse correlation between elastic constant C44 and electronic states near the Fermi level (EF) emerges, guiding applications and design. This study efficiently uncovers 3d TMC properties, offering insights for applications and design.
Requires economic work finding built institutional paint strategies and policies are formulated general economic and clarity in its stated objectives and the involvement of all economic institutions, political and stakeholders to discuss all the issues of economic, financial, monetary and analyzed for the purpose of renewal energies and determine the duties and responsibilities, leaving full freedom to the private sector in the formation of institutions to carry out his duties economic, and that the institutional structures to create the right climate for the implementation of its economic policies, which would facilitate the task of the private sector, and this h
... Show MoreIn the present work, a first-row divalent d-transition metal obtained from curcumin(Curc) and L-3,4-dihydroxyphenylalanin(L-dopa)have been synthesized which their complexes and characterized by C.H.N, conductance, spectral methods: FT-IR, Ultra–Visible. Magneto-chemical measurements, molar conductance ΛM (1×10−3 mol/L in DMSO):36- 0.84 ohm-1.cm2.mol-1 (non-electrolyte). The data shows that the complexes have the structure [M((II))-(Curc)-(L-dopa)] system. Electronic and magnetic data suggest an octahedral geometry for all complexes in which the (L-dopa) and curcumin act as bidentate ligands. Curcumin coordinated to the metal ions M (II) through the lone pair of electrons of oxygen in 2(C=O) groups. The (L-dopa) coordinated to M (II) a
... Show MoreIn this work ,glass-metal apparatus was designed and manufactured which used for preparing ahigh purity uranium. The reaction is simply take place between iodine vapour and uranium metal at 500C in closed system to form uranium tetra iodide which is decomposed on hot wire at high temperature around 1100C. Also another apparatus was made from Glass and used for preparing ahigh purity of UI4 more than 99.9% purity.
SKF Dr. Abbas S. Alwan, Dhurgham I. Khudher, INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY, 2015
New series of metal ions complexes have been prepared from the new ligand 1,5- Dimethyl-4- (5-oxohexan-2- ylideneamino) -2-phenyl- 1H-pyrazol-3 (2H)-one derived from 2,5-hexandione and 4-aminophenazone. Then, its V(IV), Ni(II), Cu(II), Pd(II), Re(V) and Pt(IV) complexes prepared. The compounds have been characterized by FT-IR, UV-Vis, mass and 1H and 13C-NMR spectra, TGA curve, magnetic moment, elemental microanalyses (C.H.N.O.), chloride containing, Atomic absorption and molar conductance. Hyper Chem-8 program has been used to predict structural geometries of compounds in gas phase, the heat of formation, (binding, total and electronic energy) and dipole moment at 298 K.
The compound [K1] was synthesized from the reaction of dichloromethane with linear alkyl benzene (Lab9) using ethanol as a solvent, and from(chloro methyl)-4-nonylbenzene) [K1] it was possible to synthesize the compound Z(4-(nonan-3-yl)phenyl) methane amine) [K2] containing the amine group by synthesized from [K2] reaction with appropriate phenolic aldehydes and using Ethanol as a solvent in the preparation of vinyl chloride4-(((4-nonylbenzyl)imino)methyl)phenol-4-(((4-nonylbenzyl)imino methyl)benzene-1,3diol) [K3-K4] bases has been used. Preparation of a number of Phenolic polymers4-(2- hydroxy-3.5-dimethylbenzyl)-2-methyl-6-(((4-4-(2hyroxy-3, 5-dimethylbenzyl)-2-methyl-6(((4 nonylbenzyl) imino) methyl) benzene-phenolnonylbenzyl) imino) me
... Show Morein this paper copper oxide (cuO thin films were prepared by the method of vacum thermal evaporation a pressure.
In this study, investigations of structural properties of n-type porous silicon prepared by laser assisted-electrochemical etching were demonstrated. The Photo- electrochemical Etching technique, (PEC) was used to produce porous silicon for n-type with orientation of (111). X-ray diffraction studies showed distinct variations between the fresh silicon surface and the synthesized porous silicon surfaces. Atomic force microscopy (AFM) analysis was used to study the morphology of porous silicon layer. AFM results showed that root mean square (RMS) of roughness and the grain size of porous silicon decreased as etching current density increased. The chemical bonding and structure were investigated by using fourier transformation infrared spec
... Show MoreIn the present work, the ternary compound MgxZn7-x O7Wurtzoid with variable Zn and Mg contents was analyzed using density functional theory with B3LYP 6-311G**basis set. The electronic and vibrational properties of MgxZn7-xO7 wurtzoids, were investigated, including energy gaps, bond lengths, spectral properties, such like infrared spectra and Raman. IR and Raman spectra were compared with experimental longitudinal optical modes frequency results. The theoretical results agree well with experiments and previous data. It has been found that the energy gap is increasing with the increased Mg concentration, and that the longitudinal optical position exposes a UV shift movement with an increase in the concentration.
Resilient polymeric materials such as silicone elastomers are currently used for maxillofacial prostheses construction but the strength of these materials and their clinical performance need to be optimized with the addition of reinforcing fillers. This study investigates the effect of zirconia nanopowder addition on tear strength, tensile strength, elongation at break, Shore A hardness, surface roughness and cytotoxicity of VST-50 maxillofacial silicone. Silicone base was mixed with different amounts (1%, 2% and 3%) of zirconia nanopowder using a vacuum mixer. Silicone without filler was used as control for comparison. Scanning Electron Microscopy and Atomic Force Microscopy were utilized to assess the efficiency of high-shear vacuum mixin
... Show More