Urbanization led to significant changes in the properties of the land surface. That appends additional heat loads at the city, which threaten comfort and health of people. There is unclear understanding represent of the relationship between climate indicators and the features of the early virtual urban design. The research focused on simulation capability, and the affect in urban microclimate. It is assumed that the adoption of certain scenarios and strategies to mitigate the intensity of the UHI leads to the improvement of the local climate and reduce the impact of global warming. The aim is to show on the UHI methods simulation and the programs that supporting simulation and mitigate the effect UHI. UHI reviewed has been conducted the form of many studies, it resulted that all simulation methods were pass through the follow stages: modeling, Simulation and mitigation. Most of the literature reviewed shows that there are some key criteria that have been adopted as universal urban health coverage in cities, and that the first control component is city design.
An experimental and theoretical analysis was conducted for simulation of open circuit cross flow heat
exchanger dynamics during flow reduction transient in their secondary loops. Finite difference
mathematical model was prepared to cover the heat transfer mechanism between the hot water in the
primary circuit and the cold water in the secondary circuit during transient course. This model takes under
consideration the effect of water heat up in the secondary circuit due to step reduction of its flow on the
physical and thermal properties linked to the parameters that are used for calculation of heat transfer
coefficients on both sides of their tubes. Computer program was prepared for calculation purposes which
cover a
Shell-and-double concentric tube heat exchanger is one of the new designs that enhance the heat transfer process. Entransy dissipation is a recent development that incorporates thermodynamics in the design and optimization of heat exchangers. In this paper the concept of entransy dissipation is related to the shell-and-double concentric tube heat exchanger for the first time, where the experiments were conducted using hot oil with temperature of 80, 100 and 120°C, flow rate of cold water was 0.667, 1, and 1.334 kg/m3 respectively and the temperature of inlet cold water was 20°C. The entransy dissipation rate due to heat transfer and to fluid friction or pressure drop was studied.
This paper presents thermal characteristics analysis of a modified Closed Wet Cooling Tower (CWCT) based on heat and mass transfer principles to improve the performance of this tower in Iraq. A prototype of CWCT optimized by added packing was designed, manufactured and tested for cooling capacity of 9 kW. Experiments are conducted to explore the effects of various operational and conformational parameters on the thermal performance. In the test section, spray water temperature and both dry bulb temperature and relative humidity of the air measured at intermediate points of the heat exchanger and packing. Heat exchangers consist of four rows and eight columns for an inline tubes arrangement and six rows and five columns f
... Show MoreThis study was conducted in Al-Salam station for Dairy cattle/private sector, for the period from 1-11-2016 to 1-11-2017, to determine the association between BTN1A1 gene polymorphism and reproductive efficiency indicator and heat tolerance in 50 Holstein cows. The results of BTN1A1 gene analysis showed a highly significant Different (P<0.01) between genotypes of BTN1A1 gene’s genotypes AA, AB the percentage were 72.00, 28.00 % respectively. Results showed that services per conception and days open was significantly (P<0.05) affected by polymorphism of BTN1A1 gene and for cows with AA genotype, there was also a significant difference (P<0.05) between the genotypes of BTN1A1 gene for IgG concentration in calves blood who belong to mother
... Show More
Abstract
Rayleigh distribution is one of the important distributions used for analysis life time data, and has applications in reliability study and physical interpretations. This paper introduces four different methods to estimate the scale parameter, and also estimate reliability function; these methods are Maximum Likelihood, and Bayes and Modified Bayes, and Minimax estimator under squared error loss function, for the scale and reliability function of the generalized Rayleigh distribution are obtained. The comparison is done through simulation procedure, t
... Show MoreAn experimental study was performed to estimate the forced convection heat transfer performance and the pressure drop of a single layer graphene (GNPs) based DI-water nanofluid in a circular tube under a laminar flow and a uniform heat flux boundary conditions. The viscosity and thermal conductivity of nanofluid at weight concentrations of (0.1 to 1 wt%) were measured. The effects of the velocity of flow, heat flux and nanoparticle weight concentrations on the enhancement of the heat transfer are examined. The Nusselt number of the GNPs nanofluid was enhanced as the heat flux and the velocity of flow rate increased, and the maximum Nusselt number ratio (Nu nanofluid/ Nu base fluid) and thermal performance factor
... Show MoreThe - mixing ratios of -transitions from levels in populated in the reactions are calculated in present work using - ratio, constant statisticalTensor and least squares fitting methods The results obtained are in general, in good agreement or consistent, within the associated uncertainties, with these reported in Ref.[9],the discrepancies that occurs are due to inaccuracy existing in the experimental data The results obtained in the present work confirm the –method for mixed transitions better than that for pure transition because this method depends only on the experimental data where the second method depends on the pure or those considered to be pure -transitions, the same results occur in – method
Metal-organic frameworks (MOFs) have emerged as revolutionary materials for developing advanced biosensors, especially for detecting reactive oxygen species (ROS) and hydrogen peroxide (H₂O₂) in biomedical applications. This comprehensive review explores the current state-of-the-art in MOF-based biosensors, covering fundamental principles, design strategies, performance features, and clinical uses. MOFs offer unique benefits, including exceptional porosity (up to 10,400 m²/g), tunable structures, biocompatibility, and natural enzyme-mimicking properties, making them ideal platforms for sensitive and selective detection of ROS and H₂O₂. Recent advances have shown significant improvements in detection capabilities, with limit
... Show More