In this study, aluminum nanoparticles (Al NPs) were prepared using explosive strips method in double-distilled deionized water (DDDW), where the effect of five different currents (25, 50, 75, 100 and 125 A) on particle size and distribution was studied. Also, the explosive strips method was used to decorate zinc oxide particles with Al particles, where Al particles were prepared in suspended from zinc oxide with DDDW. Transmission electron microscopy (TEM), UV-visible absorption spectroscopy, and x-ray diffraction are used to characterize the nanoparticles. XRD pattern were examined for three samples of aluminum particles and DDDW prepared with three current values (25, 75 and 125 A) and three samples prepared with the same currents for zinc oxide suspension with aluminum particles and DDDW. It was observed that when increasing the percentage of prepared Al particles in the suspension consisting of zinc oxide and DDDW, the energy gap of zinc oxide gradually decreased in the samples. Transmission electron microscopy (TEM) analysis is conducted to examine the size, shape, and aggregation of the nanoparticles. The TEM images reveal that the Al nanoparticles exhibit a quasi-spherical shape. The particle size distribution analysis shows that the average crystal size of Al decreases with an increase in the detonation current. This method yields particle with average sizes within the range of 20 to 90 nm. When decorating zinc oxide particles by generating Al nanoparticles inside a suspension of zinc oxide and DDDW, the size of the resulting particles increases with increasing current. © ALL RIGHTS RESERVED.
A simple, accurate, and cost-efficient UV-Visible spectrophotometric method has been developed for the determination of naphazoline nitrate (NPZ) in pure and pharmaceutical formulations. The suggested method was based on the nucleophilic substitution reaction of NPZ with 1,2-naphthoquinone-4-sulfonate sodium salt in alkaline medium at 80°C to form an orange/red-colored product of maximum absorption (λmax) at 483 nm. The stoichiometry of the reaction was determined via Job's method and limiting logarithmic method, and the mechanism of the reaction was postulated. Under the optimal conditions of the reaction, Beerʼs law was obeyed within the concentration range 0.5–50 μg/mL, the molar absorptivity value (ε) was 5766.5 L × mol–1 × c
... Show MoreThis work discusses the beginning of fractional calculus and how the Sumudu and Elzaki transforms are applied to fractional derivatives. This approach combines a double Sumudu-Elzaki transform strategy to discover analytic solutions to space-time fractional partial differential equations in Mittag-Leffler functions subject to initial and boundary conditions. Where this method gets closer and closer to the correct answer, and the technique's efficacy is demonstrated using numerical examples performed with Matlab R2015a.
In this paper, split-plate airlift electrochemical reactor as an apparatus with new configuration for wastewater treatment was provided. Two aluminum plates were fixed inside the reactor and present two functions; first it works as split plates for internal loop generation of the airlift system (the zone between the two plates acts as riser while the other two zones act as downcomer) and second it works as two electrodes for electrocoagulation process. Simulated wastewater contaminated with zinc ions was used to test the performance of this apparatus for zinc removal by studying the effect of different experimental variables such as initial concentration of zinc (50-800 ppm), electrical current density (2.67-21.4 mA/cm2), init
... Show MoreTitanium dioxide nanorods have been prepared by sol-gel template
method. The structural and surface morphology of the TiO2 nanorods was
investigated by X-ray diffraction (XRD) and atomic force microscopy
(AFM), it was found that the nanorods produced were anatase TiO2 phase.
The photocatalytic activity of the TiO2 nanorods was evaluated by the
photo degradation of methyl orange (MO). The relatively higher
degradation efficiency for MO (D%=78.2) was obtained after 6h of exposed
to UV irradiation.
This study evaluates the performance of magnetic abrasive finishing (MAF) of aluminum alloy in terms of achieving materials removal (MR). A vertical milling machine is used to perform the finishing process using a developed MAF unit that consists of an inductor made out of a 150 mm long and 20 mm diameter iron core wound with 1500 turns and 0.5 mm copper wire. The commutator and magnetic pole are attached at the top and bottom of the inductor, respectively. The required current is supplied using a DC power supply. The South Pole workpiece is a 100×50×3 mm3 plate of AA 1100 aluminum alloy, whereas the magnetic pole represented the North Pole. Pole rotational speed, applied current, and abrasive finishing time was selected as
... Show MoreFor many years controlled shot peening was considered as a surface treatment. It is now clear that the performance of control shot peening in terms of fatigue depends on the balance between its beneficial (compressive residual stress and work hardening) and beneficial effects (surface hardening).
The overall aim of this paper is to study the effects of aggressive shot peening on fatigue life of 7075 – T6 aluminum alloy. The fatigue life reduction factor (LRF) due to the aggressive shot peening was established and empirical relations were proposed to describe the behavior of LRF, roughness and fatigue life. The benefits of shot peering in terms of fatigue life are dependent on the shot peening time (SPT).
... Show More