Background: The possibility of converting the organic fraction of municipal solid waste to mature compost using the composting bin method was studied. Nine distinct treatments were created by combining municipal solid waste (MSW) with animal waste (3:1, 2:1), poultry manure (3:1, 2:1), mixed waste (2:1:1), agricultural waste (dry leaves), biocont (Trichoderm hazarium), and humic acid. Weekly monitoring of temperature, pH, EC, organic matter (OM percent), and the C/N ratio was performed, and macronutrients (N, P, K) were measured. Trace elements, including heavy metals (Cd and Pb), were tested in the first and final weeks of maturity. Results: Temperatures in the first days of composting reached the thermophilic phase in MSW compost with animal and poultry manure between 55–60 °C, pH and EC (mS/cm) increased during the composting period in most composting bin treatments. Overall, organic matter (OM percent) and the C/N ratio decreased (10.27 to 18.9) as result of microbial activity during composting. Organic matter loss percent was less in treatments containing additives (biocont l humic acid) as well agricultural waste treatment. Composting bin treatments with animals and poultry showed higher K and P at the mature stage with an increase in micronutrients. Finally heavy metals were (2.25–4.20) mg/kg and (139–202) mg/kg for Cd and Pb respectively at maturation stage. Conclusion: Therefore, the results suggested that MSW could be composted in the compost bin method with animal and poultry manure. The physio-chemical parameters pH, Ec and C/N were within the acceptable standards. Heavy metals and micronutrients were under the limits of the USA standards. The significance of this study is that the compost bin may be used as a quick check to guarantee that the outputs of long-term public projects fulfill general sustainability requirements, increase ecosystem services, and mitigate the effect of municipal waste disposal on climate change particularly the hot climate regions.
A solar cell was manufactured from local materials and was dyed using dyes extracted from different organic plants. The solar cell glass slides were coated with a nano-porous layer of Titanium Oxide and infused with two types of acids, Nitric acid and Acetic acid. The organic dyes were extracted from Pomegranate, Hibiscus, Blackberry and Blue Flowers. They were then tested and a comparison was made for the amount of voltage they generate when exposed to sunlight. Hibiscus sabdariffa extract had the best performance parameters; also Different plants give different levels of voltage.
The -multiple mixing ratios of γ-transitions from levels of populated in the are calculated in the present work by using the a2-ratio methods. We used the experimental coefficient (a2) for two γ-transitions from the same initial state, the statistical tensor, which is related to the a2-coefficient would be the same for the two transitions. This method was used in a previous work for pure transitions or which can be considered pure. In these cases the multiple mixing ratios for the second transition ( ) equal zero, but in our work we applied this method for mixed γ-transitions and then the multiple mixing ratio ( ) is known for one transition. Then we calculate the ( ) value and versareversa. The weight average of the -values calcu
... Show MoreIn this work, we calculate and analyze the photon emission from quark and anti-quark interaction during annihilation process using simple model depending on phenomenology of quantum chromodynamic theory (QCD). The parameters, which include the running strength coupling, temperature of the system and the critical temperature, carry information regarding photon emission and have a significant impact on the photons yield. The emission of photon from strange interaction with anti-strange is large sensitive to decreases or increases there running strength coupling. The photons emission increases with decreases running strength coupling and vice versa. We introduce the influence of critical temperature on the photon emission rate in o
... Show MoreExtraction of copper (Cu) from aqueous solution utilizing Liquid Membrane technology (LM) is more effective than precipitation method that forms sludge and must be disposed of in landfills. In this work, we have formulated a liquid surfactant membrane (LSM) that uses kerosene oil as the main diluent of LSM to remove copper ions from the aqueous waste solution through di- (2-ethylhexyl) phosphoric acid - D2EHPA- as a carrier. This technique displays several advantages including one-stage extraction and stripping process, simple operation, low energy requirement, and. In this study, the LSM process was used to transport Cu (II) ions from the feed phase to the stripping phase, which was prepared, using H2SO4. For LSM p
... Show MoreIn this work, the nano particles of Na-A zeolite were synthesized by sol –gel method. The samples were characterized by X-ray diffraction (XRD), X-ray luorescence (XRF), Surface area and pore volume, Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy (FTIR). Results show that the nano A zeolite is with average crystal size is 74.77 nm., Si/Al ratio 1.03, BET surface area was 581.211m2/g and the pore volume for NaA was found equal to 0.355cm3/g.
Feasibility of biosorbent of England bamboo plant origin was tested for removal of priority metal ions such as Cu and Zn from aqueous solutions in single metal state. Batch single metal state experiments were performed to determine the effect of dosage (0.5, 1 and 1.5 g), pH (3, 4, 4.5, 5 and 6), mixing speed (90, 111, 131, 156 and 170 rpm), temperature (20, 25, 30 and 35 °C) and metal ion concentration (10, 50, 70, 90 and 100 mg/L) on the ability of dried biomass to remove metal from solutions which were investigated. Dried powder of bamboo removed (for single metal state) about 74 % Cu and 69% Zn and maximum uptake of Cu and Zn was 7.39 mg/g and 6.96 mg/g respectively, from 100 mg/L of synthetic metal solution in 120 min. of contact t
... Show MoreCoated sand (CS) filter media was investigated to remove phenol and 4-nitrophenol from aqueous solutions in batch experiments. Local sand was subjected to surface modification as impregnated with iron. The influence of process variables represented by solution pH value, contact time, initial concentration and adsorbent dosage on removal efficiency of phenol and 4-nitrophenol onto CS was studied. Batch studies were performed to evaluate the adsorption process, and it was found that the Langmuir isotherm effectively fits the experimental data for the adsorbates better than the Freundlich model with the CS highest adsorption capacity of 0.45 mg/g for 4-nitrophenol and 0.25 mg/g for phenol. The CS was found to adsorb 85% of 4-nitrophenol and
... Show More