The acceptance sampling plans for generalized exponential distribution, when life time experiment is truncated at a pre-determined time are provided in this article. The two parameters (α, λ), (Scale parameters and Shape parameters) are estimated by LSE, WLSE and the Best Estimator’s for various samples sizes are used to find the ratio of true mean time to a pre-determined, and are used to find the smallest possible sample size required to ensure the producer’s risks, with a pre-fixed probability (1 - P*). The result of estimations and of sampling plans is provided in tables.
Key words: Generalized Exponential Distribution, Acceptance Sampling Plan, and Consumer’s and Producer Risks
... Show Moreالمستخلص:
في هذا البحث , استعملنا طرائق مختلفة لتقدير معلمة القياس للتوزيع الاسي كمقدر الإمكان الأعظم ومقدر العزوم ومقدر بيز في ستة أنواع مختلفة عندما يكون التوزيع الأولي لمعلمة القياس : توزيع لافي (Levy) وتوزيع كامبل من النوع الثاني وتوزيع معكوس مربع كاي وتوزيع معكوس كاما وتوزيع غير الملائم (Improper) وتوزيع
... Show MoreThis paper aims to decide the best parameter estimation methods for the parameters of the Gumbel type-I distribution under the type-II censorship scheme. For this purpose, classical and Bayesian parameter estimation procedures are considered. The maximum likelihood estimators are used for the classical parameter estimation procedure. The asymptotic distributions of these estimators are also derived. It is not possible to obtain explicit solutions of Bayesian estimators. Therefore, Markov Chain Monte Carlo, and Lindley techniques are taken into account to estimate the unknown parameters. In Bayesian analysis, it is very important to determine an appropriate combination of a prior distribution and a loss function. Therefore, two different
... Show MoreIn this paper, a Monte Carlo Simulation technique is used to compare the performance of MLE and the standard Bayes estimators of the reliability function of the one parameter exponential distribution.Two types of loss functions are adopted, namely, squared error loss function (SELF) and modified square error loss function (MSELF) with informative and non- informative prior. The criterion integrated mean square error (IMSE) is employed to assess the performance of such estimators .
This deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
This paper is devoted to compare the performance of non-Bayesian estimators represented by the Maximum likelihood estimator of the scale parameter and reliability function of inverse Rayleigh distribution with Bayesian estimators obtained under two types of loss function specifically; the linear, exponential (LINEX) loss function and Entropy loss function, taking into consideration the informative and non-informative priors. The performance of such estimators assessed on the basis of mean square error (MSE) criterion. The Monte Carlo simulation experiments are conducted in order to obtain the required results.
This paper deals with constructing mixed probability distribution from mixing exponential
This paper deals with estimation of the reliability system in the stress- strength model of the shape parameter for the power distribution. The proposed approach has been including different estimations methods such as Maximum likelihood method, Shrinkage estimation methods, least square method and Moment method. Comparisons process had been carried out between the various employed estimation methods with using the mean square error criteria via Matlab software package.
A space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.
The question of estimation took a great interest in some engineering, statistical applications, various applied, human sciences, the methods provided by it helped to identify and accurately the many random processes.
In this paper, methods were used through which the reliability function, risk function, and estimation of the distribution parameters were used, and the methods are (Moment Method, Maximum Likelihood Method), where an experimental study was conducted using a simulation method for the purpose of comparing the methods to show which of these methods are competent in practical application This is based on the observations generated from the Rayleigh logarithmic distribution (RL) with sample sizes
... Show More