Diyala River is one of the important rivers that provide water for the Governorate of Diyala. In this research, the morphology and sediment transport of this river were studied using HEC-Ras software. The selected length of the river in the present study is 193 km and extended from Diyala Weir to the confluence of Tigris River and Diyala River. The fieldwork period extended from June 2020 till August 2020, where suspended-load and bed-load samples were collected and surveyed some cross-sections. The one-dimensional sediment transport model has been calibrated for five years, from 2014 to 2019. The results were compared with the measured cross-sections in 2019, and the suitable value of (maximum depth
... Show MoreThis study specifically contributes to the urgent need for novel methods in Training of Trainers (ToT) programs which can be more effective and efficient through incorporation of AI tools. By exploring scenarios in which AI could be used to dramatically advance trainer preparation, knowledge-sharing, and skill-building across sectors, the research aims to understand the possibility. This study uses a mixed-methods approach, it surveys 500 trainers and conducts in-depth interviews with a further 50 ToT program directors across diverse industries to evaluate the impact of AI-enhanced ToT programs. The results showcase that the use of AI has a substantial positive effect on trainer performance and program outcomes. AI-enhanced ToT programs, fo
... Show MoreThe dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreThis paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p
... Show MoreThe aim of this work is to study reverse osmosis characteristics for copper sulfate hexahydrate (CuSO4.6H2O), nickel sulfate hexahydrate (NiSO4.6H2O) and zinc sulfate hexahydrate (ZnSO4.6H2O) removal from aqueous solution which discharge from some Iraqi factories such as Alnasser Company for mechanical industries. The mode of operation of reverse osmosis was permeate is removed and the concentrate of metals solution is recycled back to the feed vessel. Spiral-wound membrane is thin film composite membrane (TFC) was used to conduct this study on reverse osmosis. The variables studied are metals concentrations (50 – 150 ppm) and time (15 – 90 min). It was found that increasing the time results in an increase in concentration of metal in p
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreAcademic chemical laboratories (ACL) are considered public places the employees come in contact with a variety of pollutants. The aim of the current study was to detect heavy metals levels in the indoor air of ACL in two universities in Baghdad city and assess their levels in the academic employees’ scalp hair as biomarkers. Air samples inside ACL were collected to detect Fe, Cd, Zn, Pb and Cu. Scalp hair samples were collected from 40 adult chemical laboratory employees aged 30-60 years, who worked 5 days/week for 6 hours a day. Personal information relating to employees such as age, duration of exposure, smoking habit and sex, was collected as a questionnaire. The results of this study concluded that academic laboratory employ
... Show MoreThis research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer
... Show MoreThe current study aimed to evaluate the effect of the heavy metals copper, cadmium and cobalt when added individually, in combination and in combination on the growth and reproduction of the aquatic fungus Saprolegnia hypogyna.