Both traditional and novel techniques were employed in this work for magnetic shielding evaluation to shed new light on the magnetic and aromaticity properties of benzene and 12 [n]paracyclophanes with n = 3–14. Density functional theory (DFT) with the B3LYP functional and all-electron Jorge-ATZP and x2c-TZVPPall-s basis sets was utilized for geometry optimization and magnetic shielding calculations, respectively. Additionally, the 6-311+G(d,p) basis set was incorporated for the purpose of comparing the magnetic shielding results. In addition to traditional evaluations such as NICS/NICSzz-Scan, and 2D-3D σiso(r)/σzz(r) maps, two new techniques were implemented: bendable grids (BGs) and cylindrical grids (CGs) of ghost atoms (Bqs). BGs a
... Show MoreAmoxicillin is commercially available in the form of capsules and tablets containing 250mg or 500mg for oral administration. It is also available in the form of suspension containing "25mg/ml†. Amoxicillin is presently used as the most common antibiotics .Ten healthy Human volunteers were characterized respected to their pharmacokinetic and bioavailability of two formulations of Amoxicillin from two sources of industrial companies after a single dose administration was given orally. A procedure is described for determination the concentration levels of Amoxicillin in human plasma of healthy volunteers using high performance liquid chromatography (HPLC) with reversed-phase isocratic column at low wave length of UV-visib
... Show MoreKnowledge of the mineralogical composition of a petroleum reservoir's formation is crucial for the petrophysical evaluation of the reservoir. The Mishrif formation, which is prevalent in the Middle East, is renowned for its mineralogical complexity. Multi-mineral inversion, which combines multiple logs and inversions for multiple minerals at once, can make it easier to figure out what minerals are in the Mishrif Formation. This method could help identify minerals better and give more information about the minerals that make up the formation. In this study, an error model is used to find a link between the measurements of the tools and the petrophysical parameters. An error minimization procedure is subsequently applied to determine
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreObjective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show More