In present study the effect of soil extracts of different types of soil on ability of two clinical isolates, Pseudomonas aeruginosa and Staphylococcus aureus to form biofilm. The extract of soil was done by using sterile phosphate buffer saline and analyzed by Fourier Transform Infrared Spectroscopic (FTIR). Spectrophotometric method was used to check ability of the studied isolated bacteria to form biofilm on polystyrene microtiter plates. The data of FTIR showed very little difference was observed among extracts of three types of soil (soil contaminated with hydrocarbons; garden soil collected from gardens of al-jadrea, Baghdad and containers soil), but the highest difference was observed in the extract obtained from peat moss clay soil. The results of current study showed that the extracts of soil contaminated with hydrocarbons and garden soil increased the biofilm that form by P. aeruginosa (P<0.05). While, the highest level of biofilm formation by S. aureus was observed after adding the extract of container soil (P <0.05). It can be concluded from present study that the soil extracts can enhance bacteria to form biofilm in vitro but that was dependent on the kind of soil.
Staphylococcus aureus is one of the common causative agents of infections, from asymptomatic carriers to healthy individuals. It can colonize anterior nares of carriers with a high capability to resist different antibiotics. Students are susceptible to bacterial infection due to some factors, including poor health habits and surrounding school conditions. This study screened the rate of vancomycin- and methicillin- resistant Staphylococcus aureus nose carriers among secondary students in rural and urban schools and its association with some sociodemographic factors. The study sample included 300 male/female students aged 15-20 years from 12 schools of rural and urban areas during the period from November 2020 till May 2021. It was fo
... Show MoreMedicinal plants contain bioactive substances that are highly bioavailable in extracts or pure molecules, making them promising for therapeutic applications and precursors for chemo-pharmaceutical semi-synthesis. Harpagophytum procumbens (Devil’s Claw) is widely recognized as one of the most potent therapeutic herbs. This study aimed to extract seeds from H. procumbens using two types of solvents and to assess both qualitative and quantitative aspects of the extracts. The two extracts were evaluated for antibacterial and anti-biofilm activities using agar well diffusion assays against four bacterial isolates and two yeast isolates. Qualitative analysis identified the presence of alkaloids, flavonoids, tannins, saponins, and terpen
... Show MoreMedicinal plants contain bioactive substances that are highly bioavailable in extracts or pure molecules, making them promising for therapeutic applications and precursors for chemo-pharmaceutical semi-synthesis. Harpagophytum procumbens (Devil’s Claw) is widely recognized as one of the most potent therapeutic herbs. This study aimed to extract seeds from H. procumbens using two types of solvents and to assess both qualitative and quantitative aspects of the extracts. The two extracts were evaluated for antibacterial and anti-biofilm activities using agar well diffusion assays against four bacterial isolates and two yeast isolates. Qualitative analysis identified the presence of alkaloids, flavonoids, tannins, saponins, and terpen
... Show MoreAcinetobacter baumannii received attention for its multi-drug resistant associated with many severe infections and outbreaks in clinical environment. The aims of the study are to investigate the antibiotic susceptibility profile of clinically isolated A. baumannii, biofilm production, and the efficiency of Low Frequency Ultrasound (LFU) and honey to attenuate biofilm production. A total of 100 samples were taken from different sources from Baghdad hospitals. The susceptibility patterns revealed the percentage of pan drug resistant (PDR) isolates were 1.5 %, 72.7 % were extended drug resistant (XDR), 16.7 % were multidrug resistant (MDR), and 9.1 % were non MDR and sensitive to most antibiotics used. The ability to form
... Show MoreIntroduction: The stringent response is a bacterial adaptation mechanism triggered by stress conditions, including nutrient limitation. This response helps bacteria survive under harsh conditions, such as those encountered during infection. A key feature of the stringent response is the synthesis of the alarmone (p)ppGpp, which influences various bacterial phenotypes. In several bacterial species, stringent response activation significantly affects biofilm formation and maintenance. Methods: Clinical specimens were collected from multiple hospitals in Baghdad, Iraq. Staphylococcus aureus was identified using conventional biochemical tests. The PCR technique was applied to detect mecA, icaA, and icaD genes, while the Vitek 2 compac
... Show MoreThis study aimed to determine the effect of green bismuth oxide (BiO) NPs against multidrug-resistant (MDR) Pseudomonas aeruginosa (P. aeruginosa) from wound infections. Among 450 wound samples collected from patients admitted to the hospital, 200 P. aeruginosa isolates were identified. MDR strains of P. aeruginosa were detected by disc diffusion method. BiO NPs were synthesized using wild Bacillus subtilis (B. subtilis) strain and infrared spectroscopy, X-ray diffraction and scanning electron microscopy techniques. The antibacterial effect of the NPs compared to antibiotics against MDR strains was evaluated using a standard disk diffusion method. BiO NPs were synthesized at 0.005 M concentration of solution. According to the SEM im
... Show MoreIntroduction and Aim: Klebsiella pneumoniae is a Gram-negative bacterium responsible for a wide range of infections, including respiratory tract infections (RTIs). This research was aimed to study the antibacterial and antibiofilm effect of AgNPs produced by Gram positive and negative bacteria on RTIs associated with K. pneumoniae. Materials and Methods: The biofilm formation of K. pneumoniae was determined by tube method qualitatively from select bacterial species characterized by UV-Visible spectroscopy. The antibacterial susceptibility of the bacteria AgNPs was tested for their antibacterial and antibiofilm activity on a clinical isolate of K. pneumoniae. Results: K. pneumoniae isolated from RTIs were strong biofilm producers. The ant
... Show MoreIntroduction and Aim: Klebsiella pneumoniae is a Gram-negative bacterium responsible for a wide range of infections, including respiratory tract infections (RTIs). This research was aimed to study the antibacterial and anti-biofilm effect of AgNPs produced by Gram positive and negative bacteria on RTIs associated with K. pneumoniae. Materials and Methods: The biofilm formation of K. pneumoniae was determined by tube method qualitatively from select bacterial species characterized by UV-Visible spectroscopy. The antibacterial susceptibility of the bacteria AgNPs was tested for their antibacterial and antibiofilm activity on a clinical isolate of K. pneumoniae. Results: K. pneumoniae isolated from RTIs were strong biofilm prod
... Show MoreBackground: Entamoeba histolytica is the causative agent of amoebic dysentery and hepatic abscesses. Despite the efficacy of metronidazole in alleviating infectious diseases, the global dissemination of drug-resistant parasites raises the possibility that Punica granatum could serve as an effective natural alternative treatment. Objective: To evaluate the effect of P. granatum methanolic and aqueous extracts of various parts against E. histolytica trophozoites in an in vitro setting. Methods: Various concentrations (0.14, 0.7, 1.4, and 2.8 mg/ml) of P. granatum extracts of the flowers, leafs, peels, and seeds were chosen for this purpose. A culture medium containing 0.05x106/ml E. histolytica trophozoites was treated with different
... Show More