Abstract. In this paper, a high order extended state observer (HOESO) based a sliding mode control (SMC) is proposed for a flexible joint robot (FJR) system in the presence of time varying external disturbance. A composite controller is integrated the merits of both HOESO and SMC to enhance the tracking performance of FJR system under the time varying and fast lumped disturbance. First, the HOESO estimator is constructed based on only one measured state to precisely estimate unknown system states and lumped disturbance with its high order derivatives in the FJR system. Second, the SMC scheme is designed based on such accurate estimations to govern the nominal FJR system by well compensating the estimation errors in the states and the lumped disturbance. To verify the tracking trajectory performance, several simulations have been conducted on the simulated FJR plant model. In addition, a comparative study is carried out between the proposed method and the full state feedback linearization control (FLC) with first order ESO (ESO1).
In this paper, our purpose is to study the classical continuous optimal control (CCOC) for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show More
The purpose of this research was to evaluate rice husk functionalized with Mg-Fe-layered double hydroxide (RH-Mg/Fe-LDH) as an adsorbent for the removal of meropenem antibiotic (MA) from an aqueous solution. Several batch experiments were undertaken using various conditions. Based on the results, the optimal Mg/Fe-LDH adsorbent with a pH of 9 and an M2+/M3+ ratio of 0.5 was associated with the lowest particle size (specifically. 11.1 nm). The Langmuir and Freundlich models were consistent with the experimental isotherm data (R2 was 0.984 and 0.993, respectively), and MA’s highest equilibrium adsorption capacity was 43.3 mg/g. Additionally, the second-order model was consistent with the adsorption kinetic results.