This Book is the second edition that intended to be textbook studied for undergraduate/ postgraduate course in mathematical statistics. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces events and probability review. Chapter Two devotes to random variables in their two types: discrete and continuous with definitions of probability mass function, probability density function and cumulative distribution function as well. Chapter Three discusses mathematical expectation with its special types such as: moments, moment generating function and other related topics. Chapter Four deals with some special discrete distributions: (Discrete Uniform, Bernoulli, Binomial, Poisson, Geometric, Negative Binomial and Hypergeometric) with their mathematical formulas of p.m.f., C.D.F. and m.g.f. Chapter Five deals with some special continuous distributions: (Uniform, Normal, Exponential, Gamma and Beta) with their mathematical formulas of p.m.f., C.D.F. and m.g.f. Many solved examples are intended in this book (obtaining mean and variance of distributions by m.g.f.). Chapter Six introduces univariate discrete and continuous transformations, i.e., one dimensional variables and their yielding probability distributions. Chapter Seven devotes to truncation of distributions from left, right or both sides, beside the probability distribution of order statistics. Chapter Eight discusses mathematical features of joint, marginal and conditional distributions, as well as independency via covariance and correlation of bivariate distributions. Chapter Nine deals with some special topics such as getting distribution for some transformation from multidimensional random variables by using moment generating function (m.g.f.) and cumulative distribution function (C.D.F.) Many solved examples (about 100) are intended in this book, in addition to a variety of unsolved relied problems (about 150) at the end of each chapter to enrich the statistical knowledge of our readers.
In this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.
In this research the researcher had the concept of uncertainty in terms of types and theories of treatment and measurement as it was taken up are three types of indeterminacy and volatility and inconsistency
The experiences in the life are considered important for many fields, such as industry, medical and others. In literature, researchers are focused on flexible lifetime distribution.
In this paper, some Bayesian estimators for the unknown scale parameter of Inverse Rayleigh Distribution have been obtained, of different two loss functions, represented by Suggested and Generalized loss function based on Non-Informative prior using Jeffery's and informative prior represented by Exponential distribution. The performance of estimators is compared empirically with Maximum Likelihood estimator, Using Monte Carlo Simulation depending on the Mean Square Error (MSE). Generally, the preference of Bayesian method of Suggeste
... Show MoreMany people take protein supplements in an effort to gain muscle. However, there is some controversy as to whether this is really effective. There is evidence suggesting that consuming high level s of protein may in fact have negative side effects for health. The current study included 29 young Iraqi building muscles in two different groups (taken and not protein supplements) (age range=17-31 years), the cases were selected from family, friends, college students, and Gyms), from November 2014 to March 2015. A careful history was obtained from each volunteer including age, duration of sports, type of supplements, and family history of diseases. Some biochemical parameters like (glucose, urea, uric acid, creatinine, bilirubin, serum protei
... Show MoreMissing data is one of the problems that may occur in regression models. This problem is usually handled by deletion mechanism available in statistical software. This method reduces statistical inference values because deletion affects sample size. In this paper, Expectation Maximization algorithm (EM), Multicycle-Expectation-Conditional Maximization algorithm (MC-ECM), Expectation-Conditional Maximization Either (ECME), and Recurrent Neural Networks (RNN) are used to estimate multiple regression models when explanatory variables have some missing values. Experimental dataset were generated using Visual Basic programming language with missing values of explanatory variables according to a missing mechanism at random general pattern and s
... Show MoreIn this research, a new application has been developed for games by using the generalization of the separation axioms in topology, in particular regular, Sg-regular and SSg- regular spaces. The games under study consist of two players and the victory of the second player depends on the strategy and choice of the first player. Many regularity, Sg, SSg regularity theorems have been proven using this type of game, and many results and illustrative examples have been presented
Background: Women sexuality is basic right and it plays a major role in women's Health aspects. Up is one of the factors that lead to sexual dysfunction while the incidence of it is rising as UP severity being more. Objectives: To assess the impact of different degrees of uterine prolapse on sexual function of women at teaching hospitals in AL-Hilla City. Methodology: A descriptive analytical study was conducted from 1ST Feb to 10th Jun /2014 to assess the impact of different degrees of uterine prolapse on sexual function for women who attend to consultant clinic at teaching hospitals in AL-Hilla City
In this paper, The transfer function model in the time series was estimated using different methods, including parametric Represented by the method of the Conditional Likelihood Function, as well as the use of abilities nonparametric are in two methods local linear regression and cubic smoothing spline method, This research aims to compare those capabilities with the nonlinear transfer function model by using the style of simulation and the study of two models as output variable and one model as input variable in addition t
... Show MoreThe objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the <
... Show MoreAbstract This research sheds lights on one of the important rhetorical linguistics methods, which is the idioms phrase and its use in the Israeli political article. By the studying of its most prominent types and different grammatical structures, and its deliberative function. The application of this study was the articles of the Israeli journalist Ben-Dror Yemini. Which were published on the website of Israeli newspaper " Maariv" in (2011-2012). This research is divided into two devotions: theoretically and practically. The theoretical side included an introduction to identify the article generally, and the political article. Practically with a review of the most important definitions concerned with the idioms phrase and showing i
... Show More