This Book is the second edition that intended to be textbook studied for undergraduate/ postgraduate course in mathematical statistics. In order to achieve the goals of the book, it is divided into the following chapters. Chapter One introduces events and probability review. Chapter Two devotes to random variables in their two types: discrete and continuous with definitions of probability mass function, probability density function and cumulative distribution function as well. Chapter Three discusses mathematical expectation with its special types such as: moments, moment generating function and other related topics. Chapter Four deals with some special discrete distributions: (Discrete Uniform, Bernoulli, Binomial, Poisson, Geometric, Negative Binomial and Hypergeometric) with their mathematical formulas of p.m.f., C.D.F. and m.g.f. Chapter Five deals with some special continuous distributions: (Uniform, Normal, Exponential, Gamma and Beta) with their mathematical formulas of p.m.f., C.D.F. and m.g.f. Many solved examples are intended in this book (obtaining mean and variance of distributions by m.g.f.). Chapter Six introduces univariate discrete and continuous transformations, i.e., one dimensional variables and their yielding probability distributions. Chapter Seven devotes to truncation of distributions from left, right or both sides, beside the probability distribution of order statistics. Chapter Eight discusses mathematical features of joint, marginal and conditional distributions, as well as independency via covariance and correlation of bivariate distributions. Chapter Nine deals with some special topics such as getting distribution for some transformation from multidimensional random variables by using moment generating function (m.g.f.) and cumulative distribution function (C.D.F.) Many solved examples (about 100) are intended in this book, in addition to a variety of unsolved relied problems (about 150) at the end of each chapter to enrich the statistical knowledge of our readers.
This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
In this paper, some estimators for the reliability function R(t) of Basic Gompertz (BG) distribution have been obtained, such as Maximum likelihood estimator, and Bayesian estimators under General Entropy loss function by assuming non-informative prior by using Jefferys prior and informative prior represented by Gamma and inverted Levy priors. Monte-Carlo simulation is conducted to compare the performance of all estimates of the R(t), based on integrated mean squared.
In this research, the focus was on estimating the parameters on (min- Gumbel distribution), using the maximum likelihood method and the Bayes method. The genetic algorithmmethod was employed in estimating the parameters of the maximum likelihood method as well as the Bayes method. The comparison was made using the mean error squares (MSE), where the best estimator is the one who has the least mean squared error. It was noted that the best estimator was (BLG_GE).
The Boltzmann transport equation is solved by using two- terms approximation for pure gases . This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
From the results we can conclude that the electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride is large compared with other gases
In this paper, we illustrate how to use the generalized homogeneous -shift operator in generalizing various well-known q-identities, such as Hiene's transformation, the q-Gauss sum, and Jackson's transfor- mation. For the polynomials , we provide another formula for the generating function, the Rogers formula, and the bilinear generating function of the Srivastava-Agarwal type. In addition, we also generalize the extension of both the Askey-Wilson integral and the Andrews-Askey integral.
In this paper, the error distribution function is estimated for the single index model by the empirical distribution function and the kernel distribution function. Refined minimum average variance estimation (RMAVE) method is used for estimating single index model. We use simulation experiments to compare the two estimation methods for error distribution function with different sample sizes, the results show that the kernel distribution function is better than the empirical distribution function.
Fractal image compression depends on representing an image using affine transformations. The main concern for researches in the discipline of fractal image compression (FIC) algorithm is to decrease encoding time needed to compress image data. The basic technique is that each portion of the image is similar to other portions of the same image. In this process, there are many models that were developed. The presence of fractals was initially noticed and handled using Iterated Function System (IFS); that is used for encoding images. In this paper, a review of fractal image compression is discussed with its variants along with other techniques. A summarized review of contributions is achieved to determine the fulfillment of fractal image co
... Show MoreThe main purpose from this paper is to introduce a new kind of soft open sets in soft
topological spaces called soft omega open sets and we show that the collection of
every soft omega open sets in a soft topological space (X,~,E) forms a soft topology
~
on X which is soft finer than ~
. Moreover we use soft omega open sets to define
and study new classes of soft functions called weakly soft omega open functions and
weakly soft omega closed functions which are weaker than weakly soft open functions
and weakly soft closed functions respectively. We obtain their basic properties, their
characterizations, and their relationships with other kinds of soft functions between
soft topological spaces.<
The purpose of this paper is to give the condition under which every weakly closed
function is closed and to give the condition under which the concepts of weaklysemi
closed function and weakly pre-closed function are equivalent. Moreover,
characterizations and properties of weakly semi closed functions and weakly preclosed
function was given.
The main idea of this paper is to define other types of a fuzzy local function and study the advantages and differences between them in addition to discussing some definitions of finding new fuzzy topologies. Also in this research, a new type of fuzzy closure has been defined, where the relation between the new type and different types of fuzzy local function has been studied