Permanent deformation in asphalt concrete pavements is pervasive distress [1], influenced by various factors such as environmental conditions, traffic loading, and mixture properties. A meticulous investigation into these factors has been conducted, yielding a robust dataset from uniaxial repeated load tests on 108 asphalt concrete samples. Each sample underwent systematic evaluation under varied test temperatures, loading conditions, and mixture properties, ensuring the data’s comprehensiveness and reliability. The materials used, sourced locally, were selected to enhance the study ʼs relevance to pavement constructions in hot climate areas, considering different asphalt cement grades and con- tents to understand material variability effects on deformation. The detailed dataset created from the experimental pro- gram acts as a pivotal resource for refining predictive models and optimizing asphalt concrete mixtures and pavement design strategies, aimed at improving pavement performance and longevity under diverse operational and environmental conditions.
For structural concrete members that may expose to serious earthquake, overload or accident impact, the design of ductility must be given the same importance as the flexural strength. The aim of this investigation is to study the change in ductility of structural concrete flexural members during their exposure to limited cycles of repeated loading. Twenty full-scale beam specimens have been fabricated in to two identical groups; each group consisted of ten specimens. The first group was tested under monotonic static loading to failure and regarded as control beams, while the specimens of the second group were subjected to ten cycles of repeated loading with constant load interval, which ranged between 40% and 60% of ultimate load. S
... Show MoreFor structural concrete members that may expose to serious earthquake, overload or accident impact, the design of ductility must be given the same importance as the flexural strength. The aim of this investigation is to study the change in ductility of structural concrete flexural members during their exposure to limited cycles of repeated loading. Twenty full-scale beam specimens have been fabricated in to two identical groups; each group consisted of ten specimens. The first group was tested under monotonic static loading to failure and regarded as control beams, while the specimens of the second group were subjected to ten cycles of repeated loading with constant load interval, which ranged between 40% and 60% of ultimate load. S
... Show MoreIn this study, we have created a new Arabic dataset annotated according to Ekman’s basic emotions (Anger, Disgust, Fear, Happiness, Sadness and Surprise). This dataset is composed from Facebook posts written in the Iraqi dialect. We evaluated the quality of this dataset using four external judges which resulted in an average inter-annotation agreement of 0.751. Then we explored six different supervised machine learning methods to test the new dataset. We used Weka standard classifiers ZeroR, J48, Naïve Bayes, Multinomial Naïve Bayes for Text, and SMO. We also used a further compression-based classifier called PPM not included in Weka. Our study reveals that the PPM classifier significantly outperforms other classifiers such as SVM and N
... Show MoreFrequently, Load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some sections poorly drained are the main failure types found in some of the newly constructed road within Baghdad as well as other cities in Iraq. The use of hydrated lime in pavement construction could be one of the possible steps taken in the direction of improving pavement performance and meeting the required standards. In this study, the mechanistic properties of asphalt concrete mixes modified with hydrated lime as a partial replacement of limestone dust mineral filler were evaluated. Seven replacement rates were used; 0,0.5, 1, 1.5, 2, 2.5 and 3 percent by weight of aggregate. Asphalt concrete mixes were prepared at their
... Show MorePorous asphalt paving is a modern design method that differs from the usual asphalt pavements' traditional designs. The difference is that the design structure of porous pavements allows the free passage of fluids through their layers, which controls or reduces the amount of runoff or water accumulated in the area by allowing the flow of rain and surface runoff. The cross-structure of this type of paving works as a suitable method for managing rainwater and representing groundwater recharge. The overall benefits of porous asphalt pavements include environmental services and safety features, including controlling the build-up of contaminated metals on the road surface, rainwater management, resistance to slipping ac
... Show MoreUndoubtedly, rutting in asphalt concrete pavement is considered a major dilemma in terms of pavement performance and safety faced by road users as well as the road authorities. Rutting is a bowl-shaped depression in the wheel paths that develop gradually with the increasing number of load applications. Heavy axle loadings besides the high pavement summer temperature enhance the problem of rutting. According to the AASHTO design equation for flexible pavements, a 1.1 in rut depth will reduce the present serviceability index of relatively new pavement, having no other distress, from 4.2 to 2.5. With this amount of drop in serviceability, the entire life of the pavement in effect has been lost. Therefore, it is crucial to look at the mechani
... Show MoreFrequently, Load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some sections poorly drained are the main failure types found in some of the newly constructed road within Baghdad as well as other cities in Iraq. The use of hydrated lime in pavement construction could be one of the possible steps taken in the direction of improving pavement performance and meeting the required standards. In this study, the mechanistic properties of asphalt concrete mixes modified with hydrated lime as a partial replacement of limestone dust mineral filler were evaluated. Seven replacement rates were used; 0, 0.5, 1, 1.5, 2, 2.5 and 3 percent by weight of aggregate. Asphalt concrete mixes were prepared at their
... Show MoreLignin has emerged as a promising asphalt binder modifier due to its sustainable and renewable nature, with the potential to improve flexible pavement performance. This study investigates the use of Soda Lignin Powder (SLP), derived from Pinus wood sawdust via alkaline treatment, as an asphalt modifier to enhance mixture durability. SLP was characterized using Fourier Transformation Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscopy with Energy Dispersive X-ray Analysis (SEM/EDX), revealing significant changes in its chemical structure post-extraction. These analyses showed the presence of phenolic units, including hydroxyphenyl propane, syringyl, and guaiacyl units. The morphology of SLP was identified
... Show MoreThis study aims to analyze the spatial distribution of the epidemic spread and the role of the physical, social, and economic characteristics in this spreading. A geographically weighted regression (GWR) model was built within a GIS environment using infection data monitored by the Iraqi Ministry of Health records for 10 months from March to December 2020. The factors adopted in this model are the size of urban interaction areas and human gatherings, movement level and accessibility, and the volume of public services and facilities that attract people. The results show that it would be possible to deal with each administrative unit in proportion to its circumstances in light of the factors that appe