Preferred Language
Articles
/
HxciW5EBVTCNdQwCBpXe
Expression of Heat Shock Protein 70 in thyroid gland tumors
...Show More Authors

Heat shock protein 70 (HSP70) is a crucial protein with vital biological tasks in cell continuation of life. The variation of HSP70 activation occurs as a consequence of stress that includes temperature states, toxicity, poisoning with heavy metals, and tumor-related conditions. One of the master jobs of the HSP family is the suppression of caspase-mediated apoptosis signals. A high level of the expression of HSP70 is accountable for tumorigenesis and resistance against chemotherapeutic drugs. For this reason, the detection of HSP70 may help to diagnose cancerous diseases. From the other side, targeting this chaperone might help in treatment by maintaining late caspase-dependent events. This study was conducted to detect the presence and the location of HSP70 in Iraqi thyroid tumor tissue specimens (25 samples), in addition to 10 samples of normal thyroid tissue. Using the immunohistochemical study (paraffin method), the protein was detected in 100% of follicular carcinoma or follicular adenoma (benign) in addition to 77.7 % of papillary thyroid carcinoma while, in normal thyroid tissue, the presence of protein was in 10 % of cases. Regarding protein location in the cells, it appeared in the nuclei and the cytoplasm of follicular carcinoma cases in comparison with just in the cytoplasm of other sections.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 22 2018
Journal Name
Al-nahrain Journal For Engineering Sciences
Numerical Analysis of the Effect of Scanning Speed on the Temperature Field Distribution for Laser Heat Treatment Applications
...Show More Authors

One of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Engineering
Study the Effects of Microwave Furnace Heat on The Mechanical Properties and Estimated Fatigue life of AA2024-T3
...Show More Authors

This research aims to study the effect of microwave furnace heat on the mechanical properties and fatigue life of aluminum alloy (AA 2024-T3). Four conditions were used inside microwave furnace (specimens subjected to heat as dry for 30 and 60min. and specimens subjected to heat as wet (water) for 30 and 60 min.), and compared all results with original alloy (AA 2024-T3). Tensile, fatigue, hardness and surface roughness tests were used in this investigation. It is found that hardness of dry conditions is higher than wet conditions and it increases with increasing of time duration inside microwave furnace for dry and wet conditions. Also, tensile strength has the same behavior of hardness, but it increases with decreasing

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 31 2017
Journal Name
Journal Of Engineering
Study and Analysis of Concentric Shell and Double Tube Heat Exchanger Using - Al 2 O 3 Nanofluid
...Show More Authors

    Heat exchanger is an important device in the industry for cooling or heating process. To increase the efficiency of heat exchanger, nanofluids are used to enhance the convective heat . transfer relative to the base fluid. - Al2O3/water nanofluid is used as cold stream in the shell and double concentric tube heat exchanger counter current to the hot stream basis oil. These nanoparticles were of particle size of 40 nm and it was mixed with a base fluid (water) at volume
concentrations of 0.002% and 0.004%. The results showed that each of Nusselt number and overall heat transfer coefficient increased as nanofluid concentrations increased. The pressure drop of nanofluid increased slightly than the base fluid because

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MAGNETO HYDRODYNAMIC NATURAL CONVECTION FLOW ON A VERTICAL CYLINDER WITH A PRESENCE OF HEAT GENERATION AND RADIATION
...Show More Authors

The present work investigates the effect of magneto – hydrodynamic (MHD) laminar natural convection flow on a vertical cylinder in presence of heat generation and radiation. The governing equations which used are Continuity, Momentum and Energy equations. These equations are transformed to dimensionless equations using Vorticity-Stream Function method and the resulting nonlinear system
of partial differential equations are then solved numerically using finite difference approximation. A thermal boundary condition of a constant wall temperature is considered. A computer program (Fortran 90) was built to calculate the rate of heat transfer in terms of local Nusselt number, total mean Nusselt number, velocity distribution as well as te

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Nov 26 2017
Journal Name
Journal Of Engineering
Numerical Study of Heat Transfer Enhancement for a Flat Plate Solar Collector by Adding Metal Foam Blocks
...Show More Authors

Numerical study has been conducted to investigate the thermal performance enhancement of flat plate solar water collector by integrating the solar collector with metal foam blocks.The flow is assumed to be steady, incompressible and two dimensional in an inclined channel. The channel is provided with eight foam blocks manufactured form copper. The Brinkman-Forchheimer extended Darcy model is utilized to simulate the flow in the porous medium and the Navier-Stokes equation in the fluid region. The energy equation is used with local thermal equilibrium (LTE) assumption to simulate the thermofield inside the porous medium. The current investigation covers a range of solar radiation intensity at 09:00 AM, 12:00 PM, and 04:00

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 01 2023
Journal Name
Case Studies In Thermal Engineering
Augmenting the thermal response of helical coil latent-heat storage systems with a central return tube configuration
...Show More Authors

Low-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed d

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Mar 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Numerical Analysis of Laminar Natural Convection in Square Enclosure with and without Partitions and Study Effect of pPartition on the Flow Pattern and Heat Transfer
...Show More Authors

The problem of steady, laminar, natural convective flow in an square enclosure with and without partitions is considered for Rayleigh number (103-106) and Prandtl number (0.7). Vertical walls were maintained isothermal at different temperatures while horizontal walls and the partitions were insulated. The length of partition was taken constant. The number of partitions were placed on horizontal surface in staggered arrangement from (1– 3) and ratio of partition thickness (H/L= 0.033, 0.083, 0.124). The problem is formulated in terms of the vorticity-stream function procedure. A numerical solution based on a program in Fortran 90 with the finite difference method is obtained. Representative results illustrating the effects of the thickn

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
Evaluation of atmospheric cold plasma technique activity on phenylpropanoids gene expression and essential oil contents and different traits of Ocimum basilicum L.
...Show More Authors

The current study was conducted for studying the impact of cold plasma on the expression level of three genes that participate in the biosynthesis of the phenylpropanoid pathway in Ocimum basilicum. These studied genes were cinnamate 4-hydroxylase (c4h), 4-coumarate CoA ligase (4cl), and eugenol O-methyl transferase (eomt). Also, the cold plasma impact was studied on the essential oil components and their relation with the gene expression level. The results demonstrated that cold plasma seeds germination of the treated groups 2 (initially for 3 minutes and 3 minutes after 7 days) ,and group 3(initially for 5 minutes and 3 minutes after 7 days)  were faster than the control group. Also, the height average of the mature plants of

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Sun Sep 01 2019
Journal Name
Journal Of Physics: Conference Series
The combined effectiveness of magnetic force and heat\mass transfer on peristaltic transportation “Hyperbolic Tangent” Nanofluid in a Slopping Non-Regular Non-symmetric Channel.
...Show More Authors
Abstract<p>in the present article, we present the peristaltic motion of “Hyperbolic Tangent nanofluid” by a porous area in a two dimensional non-regular a symmetric channel with an inclination under the impact of inclination angle under the impact of inclined magnetic force, the convection conditions of “heat and mass transfer” will be showed. The matter of the paper will be further simplified with the assumptions of long wave length and less “Reynolds number”. we are solved the coupled non-linear equations by using technical analysis of “Regular perturbation method” of series solutions. We are worked out the basic equations of continuity, motion, temperature, and volume fraction</p> ... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sat Oct 08 2022
Journal Name
Journal Of Computational Design And Engineering
Twisted-fin parametric study to enhance the solidification performance of phase-change material in a shell-and-tube latent heat thermal energy storage system
...Show More Authors
Abstract<p>Phase change material (PCM) is considered as one of the most effective thermal energy storage (TES) systems to balance energy supply and demand. A key challenge in designing efficient PCM-based TES systems lies in the enhancement of heat transmission during phase transition. This study numerically examines the privilege of employing twisted-fin arrays inside a shell-and-tube latent heat storage unit to improve the solidification performance. The presence of twisted fins contributes to the dominating role of heat conduction by their curved shapes, which restricts the role of natural convection but largely aids the overall heat-transfer process during solidification. The heat-discharge </p> ... Show More
View Publication
Scopus (11)
Crossref (3)
Scopus Clarivate Crossref