The new multidentate Schiff-base (E)-6,6′-((1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-ylidene))bis(4-methyl-2-((E)(pyridine-2-ylmethylimino)methyl)phenol) H2L and its polymeric binuclear metal complexes with Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) are reported. The reaction of 2,6-diformyl-4-methyl-phenol with ethylenediamine in mole ratios of 2:1 gave the precursor 3,3′-(1E,1′E)-(ethane-1,2-diylbis(azan-1-yl-1ylidene))bis(methan-1-yl-1-ylidene)bis(2-hydroxy-5-methylbenzaldehyde) W. Condensation of the precursor with 2-(amino-methyl)pyridine in mole ratios of 1:2 gave the new N6O2 multidentate Schiff-base ligand H2L. Upon complex formation, the ligand behaves as a dibasic octadentate species with the involvement of the nitrogen atoms of the pyridine groups in coordination for all complexes. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectroscopic methods. These studies revealed octahedral geometries for Cr(III), Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Cd(II) and Hg(II) complexes of general formulae [Cr III 2 (L)Cl2]Cl2, [Ni II 2 (L)(H2O)2]Cl2 and [M2(L)Cl2] and five co-ordinate Zn(II) complex of general formula [Zn II 2 (L)]Cl2.
Previous studies on the synthesis and characterization of metal chelates with uracil by elemental analysis, conductivity, IR, UV-Vis, NMR spectroscopy, and thermal analysis were covered in this review article. Reviewing these studies, we found that uracil can be coordinated through the electron pair on the N1, N3, O2, or O4 atoms. If the uracil was a mono-dentate ligand, it will be coordinated by one of the following atoms: N1, N3 or O2. But if the uracil was bi-dentate ligand, it will be coordinated by atoms N1 and O2, N3 and O2 or N3 and O4. However, when uracil forms complexes in the form of polymers, coordination occurs through the following atoms: N1 and N3 or N1 and O4.
Abstract: The M(II) complexes [M2(phen)2(L)(H2O)2Cl2] in (2:1:2 (M:L:phen) molar ratio, (where M(II) =Mn(II), Co(II), Cu(II), Ni(II) and Hg(II), phen = 1,10-phenanthroline; L = 2,2'-(1Z,1'Z)-(biphenyl-4,4'-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1- ylidene)diphenol] were synthesized. The mixed complexes have been prepared and characterized using 1H and13C NMR, UV/Visible, FTIR spectra methods and elemental microanalysis, as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: Staphylococcus aurous, Escherichia coli, Bacillussubtilis and Pseudomonasaeroginosa to assess their antimicrobial properties. From this study shows that a
... Show MoreIn this study, synthesised new ligand: potassium 2,2'-(quinoxaline-2,3- diyl)bis(1-phenylhydrazinecarbodithioate) (L). The ligand synthesised by reacting N1,N2-dip-tolyloxalamide as the starting material with CS2 and KOH to add the CS2 group and then with phenylendiammine to achieve (L). The ligand used in the synthesis of complexes with (CoII, NiII and CdII). The new ligand and its complexes characterised by FT-IR, UV-Vis, 1H, 13C-NMR, Mass spectroscopy, and elemental analysis, in addition to the above techniques were using magnetic moment, atomic absorption, chloride content, and melting point to describe the metal complexes.
Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of study. Write a brief abstract about your paper’s subject of
... Show MoreIn present project, new Schiff base of 4, 4'- (((1E, 1'E)-1,4-.phenylenebis- (methane-ylylidene))-bis-(azane-ylylidene)) bis-(5-(4-chlorophenyl) -4H -1,2,4-triazole-3-thione) (L3) has been synthesized by condensation of 4-amino-5-(4-chlorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione with benzene-1,4-dicarboxaldehyde. The new asymmetrical Schiff base (L3) used as a ligand to synthesize a new complex with Co(II), Ni(II), Cu(II), Pd(II), and Pt(IV) metal ions by 1:2 (Metal: ligand) ratio. New ligand and their complexes have been exanimated and Confirmed by Fourier-transform infrared (FT-IR), Ultraviolet-visible (UV-visible), Proton nuclear magnetic resonance (1HNMR), carbon13 nuclear magnetic resonance (13CNMR), carbon-hydrogen nitrogen sulf
... Show MorePhosphorus‐based Schiff base were synthesized by treating bis{3‐[2‐(4‐amino‐1.5‐dimethyl‐2‐phenyl‐pyrazol‐3‐ylideneamino)ethyl]‐indol‐1‐ylmethyl}‐phosphinic acid with paraformaldehyde and characterized as a novel antioxidant. Its corresponding complexes [(VO)2L(SO4)2], [Ni2LCl4], [Co2LCl4], [Cu2LCl4], [Zn2LCl4], [Cd2LCl4], [Hg2LCl4], [Pd2LCl4], and [PtL
... Show More