Abstract. In this study, we shall research the fibrewise micro ideal topological spaces over Ḃ, as well as the relationship between fibrewise micro ideal topological spaces over Ḃ and fibrewise micro topological spaces over Ḃ. At first present introduces a novel notion from fibrewise micro ideal topological spaces over Ḃ, and differentiates it from fibrewise micro topological spaces over Ḃ. Some fundamental characteristics from these spaces are studied. Then show discussed the fibrewise micro ideal closed and micro ideal open topologies. Many propositions relating to these ideas are offered. In the next part will study defines and investigates novel conceptions from fibrewise micro ideal topological spaces over Ḃ, particularly fibrewise micro.ἱ.ideal topological spaces over Ḃ, when ἱ ∈ {ὰ, ₷, ₽, Ƅ, Ƀ}and provides counter instances to explain these notions.
Abstract: In recent times, global attention has increasingly focused on the critical issue of environmental sustainability, owing to escalating environmental degradation exacerbated by the utilization of green spaces and technological innovation. This phenomenon necessitates thorough examination, prompting the present study to scrutinize the impact of various factors, namely green spaces, technological innovation, environmental taxes, renewable energy consumption (REC), inflation, and economic growth (EG), on environmental sustainability within the context of Iraq. Secondary data extracted from the World Development Indicators (WDI) spanning the period from 1991 to 2022 served as the foundation for this investigation. Methodologically, the
... Show MoreWe examine 10 hypothetical patients suffering from some of the symptoms of COVID 19 (modified) using topological concepts on topological spaces created from equality and similarity interactions and our information system. This is determined by the degree of accuracy obtained by weighing the value of the lower and upper figures. In practice, this approach has become clearer.
In this paper the concept of (m, n)- fully stable Banach Algebra-module relative to ideal (F − (m, n) − S − B − A-module relative to ideal) is introducing, we study some properties of F − (m, n) − S − B − A-module relative to ideal and another characterization is given
In this paper, the concept of normalized duality mapping has introduced in real convex modular spaces. Then, some of its properties have shown which allow dealing with results related to the concept of uniformly smooth convex real modular spaces. For multivalued mappings defined on these spaces, the convergence of a two-step type iterative sequence to a fixed point is proved
The visual stimulus is the effective force in visual attraction that achieves visual and perceptual co-optation and is important in wooing the recipient, and many procedural processes in the design are interpreted on it as the visual stimulus achieves visual comfort and a sense of pleasure and gives (place) the interior space a transformation in its plastic structure as well as arousing attention through The kinetic rhythm and the formal diversity, which increases the possibility of breaking the routine and traditional constraints of design patterns through the coating and encapsulation of the vertical and horizontal levels . Thus, the research problem was launched based on the following question: What are the stimuli of the visual stimu
... Show MoreThe pharmacy is the face for the health buildings and hospitals, The linking professional relationships and functional, it is been from the important places that most people go it, so according to that we must format its interior design in form that suitable with the need of most people use it or work in it, and this the search goal, dashing from the search subject which to hide finding designer treatment for the pharmacies interior spaces, to give share in the functional improvement performance or aesthetic. We define the search goals to share in educate the pharmacist in the effect of interior design for improvement of interior environment, in addition to the search consider as designer trying add to the other trying the interior desig
... Show MoreThe aim of the present work is to define a new class of closed soft sets in soft closure spaces, namely, generalized closed soft sets (
In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
A complete metric space is a well-known concept. Kreyszig shows that every non-complete metric space can be developed into a complete metric space , referred to as completion of .
We use the b-Cauchy sequence to form which “is the set of all b-Cauchy sequences equivalence classes”. After that, we prove to be a 2-normed space. Then, we construct an isometric by defining the function from to ; thus and are isometric, where is the subset of composed of the equivalence classes that contains constant b-Cauchy sequences. Finally, we prove that is dense in , is complete and the uniqueness of is up to isometrics
The aim of this paper is to study the best approximation of unbounded functions in the
weighted spaces
,
1, 0 ,
p
p L α
α ≥>.
Key Words: Weighted space, unbounded functions, monotone approximation