Preferred Language
Articles
/
HhegRo4BVTCNdQwCKkDX
Natural Convection in Annulus Between Two Concentric Cylinders Partially Filled with Metal Foam Distributed with New Suggested Design
...Show More Authors
Abstract<p>The investigation of natural convection in an annular space between two concentric cylinders partially filled with metal foam is introduced numerically. The metal foam is inserted with a new suggested design that includes the distribution of metal foam in the annular space, not only in the redial direction, but also with the angular direction. Temperatures of inner and outer cylinders are maintained at constant value in which inner cylinder temperature is higher than the outer one. Naiver Stokes equation with Boussinesq approximation is used for fluid regime while Brinkman-Forchheimer Darcy model used for metal foam. In addition, the local thermal equilibrium condition in the energy equation of the porous media is presumed to be applicable for the present investigation. CFD ANSYS FLUENT software package (version 18.2) is used as a solver to this problem. Various parameters are examined; Rayleigh number, Darcy number, and thermal conductivity ratio to study the effect of them on fluid flow and heat transfer inside the annuli space in the suggested design of metal foam layer. current model is compared with the available published results and good agreement is noticed. Results showed that as Rayleigh number increases the dominated of convection mode increases and Nusselt increases. Also, Nusselt is larger at the higher Darcy and thermal conductivity ratio. It was found that at Rayleigh of 10<sup>6</sup> and thermal conductivity ratio of 10<sup>4</sup> Nusselt reach its higher value which is 6.69 for Darcy of 0.1 and 6.77 for Darcy of 0.001. A comparison between this design and the traditional design was established for Darcy 0.001 and thermal conductivity ratio 10<sup>2</sup>, and its showed a good enhancement in Nusselt number and the greatest enhancement percentage was 44% at Rayleigh equal 5*10<sup>4</sup> while the lowest percentage is 6% for Rayleigh equal10<sup>6</sup>.</p>
Scopus Crossref
View Publication
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Experimental Investigation of Convection Heat Transfer Enhancement in Horizontal Channel Provided with Metal Foam Blocks
...Show More Authors

Convection heat transfer in a horizontal channel provided with metal foam blocks of two numbers of pores per unit of length (10 and 40 PPI) and partially heated at a constant heat flux is experimentally investigated with air as the working fluid. A series of experiments have been carried out under steady state condition. The experimental investigations cover the Reynolds number range from 638 to 2168, heat fluxes varied from 453 to 4462 W/m2, and Darcy number 1.77x10-5, 3.95x10-6. The measured data were collected and analyzed. Results show that the wall temperatures at each heated section are affected by the imposed heat flux variation, Darcy number, and Reynolds number variation. The var

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 27 2023
Journal Name
8th Engineering And 2nd International Conference For College Of Engineering – University Of Baghdad: Coec8-2021 Proceedings
Experimental study of natural convection heat transfer on an enclosure partially filled porous medium heated from below by constant heat flux
...Show More Authors

This study reports on natural convection heat transfer in a square enclosure of length (L=20 cm) with a saturated porous medium (solid glass beads) having same fluid (air) at lower horizontal layer and free air fill in the rest of the cavity's space. The experimental work has been performed under the effects of heating from bottom by constant heat flux q=150,300,450,600 W/m2 for four porous layers thickness Hp (2.5,5,7.5,1) cm and three heaters length δ(20,14,7) cm. The top enclosure wall was good insulated and the two side walls were symmetrically cooled at constant temperature. Four layers of porous media with small porosity, Rayleigh number range (60.354 - 241.41) and (Da) 3.025x10-8 has been investigated. The obtained data of temperatu

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Computational Analysis of Turbulent Natural Convection in Water Filled Tall Enclosure
...Show More Authors

In this study, the turbulent buoyancy driven fluid flow and heat transfer in a differentially heated rectangular enclosure filled with water is quantified numerically. The two dimensional governing differential equations are discretized using the finite volume method. SIMPLE algorithm is employed to obtain stabilized solution for high Rayleigh numbers by a computational code written in FORTRAN language. A parametric study is undertaken and the effect of Rayleigh numbers (1010 to 1014), the aspect ratio (30, 40 and 50), and the tilt angle (10o to 170o ) on fluid flow and heat transfer are investigated. The results of the adopted model in the present work is compared with previously published results and a qualitative agreement and a good

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 04 2013
Journal Name
1st Post – Graduate Students Conference, Alnahrain University / College Of Engineering
Convection Heat Transfer in Horizontal Annulus Porous Media with Rotating Outer Cylinder
...Show More Authors

A numerical investigation of mixed convection in a horizontal annulus filled with auniform fluid-saturated porous medium in the presence of internal heat generation is carried out.The inner cylinder is heated while the outer cylinder is cooled. The forced flow is induced by thecold outer cylinder rotating at a constant angular velocity. The flow field is modeled using ageneralized form of the momentum equation that accounts for the presence of porous mediumviscous, Darcian and inertial effects. Discretization of the governing equations is achieved usinga finite difference method. Comparisons with previous works are performed and the results showgood agreement. The effects of pertinent parameters such as the Richardson number and internalRay

... Show More
Publication Date
Wed Jan 01 2020
Journal Name
Journal Of Mechanical Engineering Research And Developments
Development of natural convection heat transfer in heat sink using a new fin design
...Show More Authors

Scopus (1)
Scopus
Publication Date
Mon Jul 01 2013
Journal Name
International Journal Of Computer Applications
Mixed Convection in a Square Cavity Filled with Porous Medium with Heated Bottom Wall
...Show More Authors

Two-dimensional unsteady mixed convection in a porous cavity with heated bottom wall is numerically studied in the present paper. The forced flow conditions are imposed by providing a hydrostatic pressure head at the inlet port that is located at the bottom of one of the vertical side walls and an open vent at the top of the other vertical side wall. The Darcy model is adopted to model the fluid flow in the porous medium and the combination effects of hydrostatic pressure head and the heat flux quantity parameters are carefully investigated. These governing parameters are varied over wide ranges and their effect on the heat transfer characteristics is studied in detail. It is found that the time required to reach a desired temperature at th

... Show More
Publication Date
Tue Apr 01 2014
Journal Name
Journal Of Engineering
Mixed Convection in a Square Cavity Filled with Porous Medium with Bottom Wall Periodic Boundary Condition
...Show More Authors

Transient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic pressure head , , , , and ), sinusoidal amplitude range of

... Show More
Preview PDF
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Mixed Convection in a Square Cavity Filled with Porous Medium with Bottom Wall Periodic Boundary Condition
...Show More Authors

Transient mixed convection heat transfer in a confined porous medium heated at periodic sinusoidal heat flux is investigated numerically in the present paper. The Poisson-type pressure equation, resulted from the substituting of the momentum Darcy equation in the continuity equation, was discretized by using finite volume technique. The energy equation was solved by a fully implicit control volume-based finite difference formulation for the diffusion terms with the use of the quadratic upstream interpolation for convective kinetics scheme to discretize the convective terms and the temperature values at the control volume faces. The numerical study covers a range of the hydrostatic  pressure sinusoidal  amplitude  range and

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Laminar Natural Convection in nonrectangular Enclosure with and without Fins
...Show More Authors

In the present work, steady, laminar natural convection in nonrectangular enclosures is analyzed numerically with and without fin. Vertical walls insulated while horizontal walls maintained isothermal at different temperature and the fin was placed on horizontal surface. The length of fin was equal (B/L=0.22, 0.44 and 0.66) and thickness of fin was constant. Various parameters are studied: Rayleigh number (from 104 to 107 ), Prandtl number (0.7), number of fin change from (1-3) and aspect ratio (H/L= 0.15 to 0.5). The problem is formulated in terms of the vorticity-stream function procedure. A numerical solution based on program in Fortran 90 with Tec plot program. The finite difference method is used. Streamlines and isotherms are prese

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 30 2011
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Laminar Free Convection in Three Dimensional Inclined Porous Annulus with Fins on the Inner Cylinder
...Show More Authors

An experimental and numerical study was carried out to investigate the heat transfer by natural convection in a three dimensional annulus enclosure filled with porous media (silica sand) between two inclined concentric cylinders with (and without) annular fins attached to the inner cylinder under steady state condition. The experiments were carried out for a range of modified Rayleigh number (0.2 ≤Ra*≤ 11) and extended to Ra*=500 for numerical study and for annulus inclination angle of (δ = 0˚, 30˚, 60˚ and 90˚). The numerical study was to give the governing equation under assumptions that used Darcy law and Boussinesq’s approximation and then it was solved numerically using finite difference approximation. It was found that t

... Show More
View Publication Preview PDF