Abstract Background: This study is aimed to assess the maxillary incisors’ root position, angulation, and buccal alveolar bone thickness in both genders and different classes of malocclusion using cone‑beam computed tomography (CBCT). Materials and Methods: Two hundred and six CBCT images were gathered and analyzed by three‑dimensional On‑Demand software to measure the variables of 803 maxillary central and lateral incisors. Genders and class difference was determined by unpaired t‑test, one‑way ANOVA, and Chi‑square tests. Results: Buccal root position of the maxillary incisors accounted for in the majority of the cases followed by the middle and palatal positions. The thickness of alveolar bone appears to have nearly the same pattern of decreasing in the mean values above the level of 2 mm from the crest of the bone up to the 6 mm level then increase in the apex of the root. The angle between the long axis of the maxillary incisors and the corresponding alveolar bone is higher significantly in class II followed by class I and III with no significant gender difference. Conclusions: most of the maxillary incisors examined were located in a very close position to the buccal cortical plate and covered by a thin buccal bone wall. The apparent association was noted between the incisors’ root position and angulation in the alveolar bone with the buccal
Low-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed d
... Show MoreThis paper examines a new nonlinear system of multiple integro-differential equations containing symmetric matrices with impulsive actions. The numerical-analytic method of ordinary differential equations and Banach fixed point theorem are used to study the existence, uniqueness and stability of periodic solutions of impulsive integro-differential equations with piecewise continuous functions. This study is based on the Hölder condition in which the ordering , and are real numbers between 0 and 1.
The effect of the annealing on the optical transmission , absorp tion coefficient,
dielectric constants (ε
r
),( ε
i
) ,Skin depth and the optical ener gy gap of (ZnO)x(CdO)1-x thin
films with (x=0.05) deposited on preheated glass substrates at a temperature of (450 C°) by
chemical pyrolysis technique were performed . These f ilms show direct allowed inter band
transition that influenced by annealing at ( 450 C°) for two hours . And it also found that the
optical ener gy gap has been increased fro m about (2.50 eV) before annealing to about (2.65
eV) after annealing , fro m the analysis of the absorp tion and transmission sp ectra in the
wavelength range (380-900nm) . The results show t
A new Schiff base complex was prepeard and characterized: Chloro –Oxo (bis(Ohydroxy benzaldehyde) O-phenylene di imination ) Vanadium (V) with general formula (VOLCL). Complex was studied by using Three different organics Organic The photo chemistry of this solvent with different polarity . These solvents were ( Acetone,pyridinest chloro form) . It was found that the chelate Vanadium (V) complex decomposed photochemically in these solvents during . In the tra oxidation –reduction reaction leading to free radical derived in the ligand of shiff base ℓ .Vanadium IV chelate complex . It was also found that the quantum yield of photo decomposition (фd) and Activity ratio did not de
... Show MoreExposure assays to magnetized water have so far revealed striking results. The present study was conducted to determine the effects of magnetized water treatment with in different intensities 500 , 1000 and 1500 Gauss on some biological aspects for species of freshwater Gastropod Lymnaea lagotis (Schrank, 1803) which important species in faun of aquatic habitats of Iraq. This species are considered a component of the food chain. The obtained results compared with these species which lived in the river(control). Result of these experiments showed increased significance the shell size (shell high, shell aperture length, shell aperture width and shell width) for L. lagotis with increased intensity magnetized water such as treated water with 1
... Show MoreThis work investigates the structural, optical, and surface properties of ZnO thin films prepared by sol-gel method. The effect on waveguide sensor was examined at different irradiation durations of alpha particles. The X-ray diffraction (XRD) measurements revealed that the crystalline phase of ZnO thin films does not change after irradiation and showed a hexagonal structure of wurtzite type with an orientation toward (002). Moreover, ZnO thin films absorbance was increased with increasing irradiation time, whereas the transmittance was decreased. Additionally, increasing the irradiation time of alpha particles caused an increase in the extinction coefficient and the imaginary part, while the optical energy gap of the ZnO samples w
... Show MoreThe modified Hummers method was applied to prepare graphene oxide (GO) from the graphite powder. Tin oxide nanoparticles with different loading (10-20 wt.%) supported on reduced graphene oxide were synthesized to evaluate the oxidative desulfurization efficiency. The catalyst was synthesized by the incipient wetness impregnation (IWI) technique. Different analysis methods like FT-IR, XRD, FESEM, AFM, and Brunauer-Emmett-Teller (BET) were utilized to characterize graphene oxide and catalysts. The XRD analysis showed that the average crystal size of graphene oxide was 6.05 nm. In addition, the FESEM results showed high metal oxide dispersions on the rGO. The EDX analysis shows the weight ratio of Sn is close to its theoretical weight.
... Show MoreA numerical investigation was performed for the radiative magnetohydrodynamic (MHD) viscous nanofluid due to convective stretching sheet. Heat and mass transfer were investigated in terms of viscous dissipations, thermal radiation and chemical reaction. The governing Partial Differential Equations (PDEs) were transformed into an arrangement of non-linear Ordinary Differential Equations (ODEs) by using the similarity transformation. The resulting system of ODEs is solved numerically by using shooting method along with Adams-Moulton Method of order four with the help of the computational software FORTAN. Furthermore, we compared our results with the existing results for especial cases. which are in an excellent agreement. The
numerical
In this paper, an inexpensive, simple and well-accurate process of the generation of bimetallic silver Ag//gold Au core//shell is colloidal metal nanoparticles (MNPs). This is achieved via an atmospheric pressure non-thermal plasma glow discharge between two electrodes. One of these electrodes is a capillary tube placing over solution about (1 cm) that acts as the cathode, while the other electrode is a metal disk immersed in the solution and acts as an anode. Glow discharge process carried out at room temperature using a home-made cell with (6 KV) applied voltage and direct current (DC) about (1.8 mA) for different discharge periods. A wide range of bimetallic Ag//Au colloidal MNPs was rapidly synthesized as a result of non-thermal plas
... Show More