Porous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O2 procedure, ion exchange, Fenton oxidation, membrane activities, ozonation, membrane bioreactor, electrochemical treatment, wet air oxidation, and a carbon capture methodology utilizing various porous materials. A particular focus for innovative research is on developing technologies to synthesize porous materials and assess their performance in removing various pollutants from wastewater at varying experimental conditions. Porous materials can be essential in designing wastewater treatment systems to address the critical environmental issues of water stress and safe drinking water worldwide.
The objective of this research paper is two-fold. The first is a precise reading of the theoretical underpinnings of each of the strategic approaches: "Market approach" for (M. Porter), and the alternative resource-based approach (R B V), advocates for the idea that the two approaches are complementary. Secondly, we will discuss the possibility of combining the two competitive strategies: cost leadership and differentiation. Finally, we propose a consensual approach that we call "dual domination".
Nanochemistry is a significant area which involves the synthesis, design, and manipulation of particle structures with dimensions ranging from 1 to 100 nanometres. It is now one of the major concerns of pharmaceutical and biological researchers. The current study discusses recent advances in the use of silver nanoparticles (AgNPs) as a selective sensor for qualitative and colorimetric quantitative detection of mercury ions. The synthesis of significant noble metal AgNPs is described as a novel, low-cost, quick, and simple method for detecting mercury ions. Due to the seriousness of mercury toxicity to our cells, AgNPs may be successfully employed for the detection of ecologically harmful mercury ions in a wide variety of aqueous
... Show MoreIntroduction: All-ceramic crowns are widely used in prosthodontics and cosmetic dentistry due to their good esthetic and proper physical properties. Chipping of ceramic is one of the most common post-insertion complications, that can be fixed either extraoral or intraorally. The latter is time time-effective alternative, less traumatic, and low-cost. A newer objective method of laser is a surface modification of ceramics to increase surface roughness. The aim of this study is to provide a review of Er,Cr;YSGG (2960nm) in intraoral repair and shear bond strength (SBS). Method: A thorough search considering Google Scholar and PubMed published data and ten articles found wh
... Show MoreThe COVID-19 pandemic has necessitated new methods for controlling the spread of the virus, and machine learning (ML) holds promise in this regard. Our study aims to explore the latest ML algorithms utilized for COVID-19 prediction, with a focus on their potential to optimize decision-making and resource allocation during peak periods of the pandemic. Our review stands out from others as it concentrates primarily on ML methods for disease prediction.To conduct this scoping review, we performed a Google Scholar literature search using "COVID-19," "prediction," and "machine learning" as keywords, with a custom range from 2020 to 2022. Of the 99 articles that were screened for eligibility, we selected 20 for the final review.Our system
... Show Moreسمير خلف فياض * و محسن طالب د.نوال عزت عبد اللطيف*, مجلة الهندسة والتكنولوجيا, 2010
Stereo lithography (SLA) three-dimensional (3D) printing process is a type of additive manufacturing techniques that uses digital models from computer-aided design to automatically produce customized 3D objects. Around 30 years, it has been widely utilized in the manufacturing, design, engineering, industrial sectors and its applications in dentistry for manufacturing prosthodontics are very important. The stereo lithography technology is highly regarded because it can produce items with excellent precision especially when selecting the best process parameters. This review article offers a useful and scientific summary of SLA three-dimensional printing technology and its brief history. The specific type of 3D printers which is SLA t
... Show MoreStereo lithography (SLA) three-dimensional (3D) printing process is a type of additive manufacturing techniques that uses digital models from computer-aided design to automatically produce customized 3D objects. Around 30 years, it has been widely utilized in the manufacturing, design, engineering, industrial sectors and its applications in dentistry for manufacturing prosthodontics are very important. The stereo lithography technology is highly regarded because it can produce items with excellent precision especially when selecting the best process parameters. This review article offers a useful and scientific summary of SLA three-dimensional printing technology and its brief history. The specific type of 3D printers which is SLA type b
... Show More