Porous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O2 procedure, ion exchange, Fenton oxidation, membrane activities, ozonation, membrane bioreactor, electrochemical treatment, wet air oxidation, and a carbon capture methodology utilizing various porous materials. A particular focus for innovative research is on developing technologies to synthesize porous materials and assess their performance in removing various pollutants from wastewater at varying experimental conditions. Porous materials can be essential in designing wastewater treatment systems to address the critical environmental issues of water stress and safe drinking water worldwide.
A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreRecent years have witnessed an increase in the use of composite coatings for numerous applications, including aerospace, aircraft, and maritime vessels. These materials owe this popularity surge to the superior strength, weight, stiffness, and electrical insulation they exhibit over conventional substances, such as metals. The growing demand for such materials is accompanied by the inevitable need for fast, accurate, and affordable nondestructive testing techniques to reveal any possible defects within the coatings or any defects under coating. However, typical nondestructive testing (NDT) techniques such as ultrasonic testing (UT), infrared thermography (IRT), eddy current testing (ECT), and laser shearography (LS) have failed to p
... Show MoreIn this paper, CdO nanoparticles prepared by pulsed laser deposition techniqueonto a porous silicon (PS) surface prepared by electrochemical etching of p-type silicon wafer with resistivity (1.5-4Ω.cm) in hydrofluoric (HF) acid of 20% concentration. Current density (15 mA/cm2) and etching times (20min). The films were characterized by the measurement of AFM, FTIR spectroscopy and electrical properties.
Atomic Force microscopy confirms the nanometric size.Chemical components during the electrochemical etching show on surface of PSchanges take place in the spectrum of CdO deposited PS when compared to as-anodized PS.
The electrical properties of prepared PS; namely current density-voltage charact
... Show MoreWith the high usage of computers and networks in the current time, the amount of security threats is increased. The study of intrusion detection systems (IDS) has received much attention throughout the computer science field. The main objective of this study is to examine the existing literature on various approaches for Intrusion Detection. This paper presents an overview of different intrusion detection systems and a detailed analysis of multiple techniques for these systems, including their advantages and disadvantages. These techniques include artificial neural networks, bio-inspired computing, evolutionary techniques, machine learning, and pattern recognition.
Blockchain technology relies on cryptographic techniques that provide various advantages, such as trustworthiness, collaboration, organization, identification, integrity, and transparency. Meanwhile, data analytics refers to the process of utilizing techniques to analyze big data and comprehend the relationships between data points to draw meaningful conclusions. The field of data analytics in Blockchain is relatively new, and few studies have been conducted to examine the challenges involved in Blockchain data analytics. This article presents a systematic analysis of how data analytics affects Blockchain performance, with the aim of investigating the current state of Blockchain-based data analytics techniques in research fields and
... Show MoreThe No Mobile Phone Phobia or Nomophobia notion is referred to the psychological condition once humans have a fear of being disconnected from mobile phone connectivity. Hence, it is considered as a recent age phobia that emerged nowadays as a consequence of high engagement between people, mobile data, and communication inventions, especially the smart phones. This review is based on earlier observations and current debate such as commonly used techniques that modeling and analyzing this phenomenon like statistical studies. All that in order to possess preferable comprehension concerning human reactions to the speedy technological ubiquitous. Accordingly, humans ought to restrict their utilization of mobile phones instead of prohibit
... Show MoreHumans use deception daily since it can significantly affect their life and provide a getaway solution for any undesired situation. Deception is either related to low-stakes (e.g. innocuous) or high-stakes (e.g. with harmful situations). Deception investigation importance has increased, and it became a critical issue over the years with the increase of security levels around the globe. Technology has made remarkable achievements in many human life fields, including deception detection. Automated deception detection systems (DDSs) are widely used in different fields, especially for security purposes. The DDS is comprised of multiple stages, each of which should be built/trained to perform intelligently so that the whole system can give th
... Show MoreMulti-agent systems are subfield of Artificial Intelligence that has experienced rapid growth because of its flexibility and intelligence in order to solve distributed problems. Multi-agent systems (MAS) have got interest from various researchers in different disciplines for solving sophisticated problems by dividing them into smaller tasks. These tasks can be assigned to agents as autonomous entities with their private database, which act on their environment, perceive, process, retain and recall by using multiple inputs. MAS can be defined as a network of individual agents that share knowledge and communicate with each other in order to solve a problem that is beyond the scope of a single agent. It is imperative to understand the chara
... Show More