Mobile ad hoc network security is a new area for research that it has been faced many difficulties to implement. These difficulties are due to the absence of central authentication server, the dynamically movement of the nodes (mobility), limited capacity of the wireless medium and the various types of vulnerability attacks. All these factor combine to make mobile ad hoc a great challenge to the researcher. Mobile ad hoc has been used in different applications networks range from military operations and emergency disaster relief to community networking and interaction among meeting attendees or students during a lecture. In these and other ad hoc networking applications, security in the routing protocol is necessary to protect against malicious attacks as well as in data transmission. The goal of mobile ad hoc security is to safeguard the nodes’ operation and ensure the availability of communication in spite of adversary nodes. The node operations can be divided into two phases. The first phase is to discover the route (s) path. The second phase is to forward the data on the available discovered routes. Both stages need to protect from attacks; so many protocols have been proposed to secure the routing and data forwarding. This is a review study to mobile ad hoc protocols for securing routing as well as protocols for securing packets forwarding. Furthermore, it will present the characteristics and the limitations for each protocol and attributes.
It has become necessary to change from a traditional system to an automated system in production processes, because it has high advantages. The most important of them is improving and increasing production. But there is still a need to improve and develop the work of these systems. The objective of this work is to study time reduction by combining multiple sequences of operations into one process. To carry out this work, the pneumatic system is designed to decrease\ increase the time of the sequence that performs a pick and place process through optimizing the sequences based on the obstacle dimensions. Three axes are represented using pneumatic cylinders that move according to the sequence used. The system is implemented and
... Show MoreGas hydrate formation poses a significant threat to the production, processing, and transportation of natural gas. Accurate predictions of gas hydrate equilibrium conditions are essential for designing the gas production systems at safe operating conditions and mitigating the problems caused by hydrates formation. A new hydrate correlation for predicting gas hydrate equilibrium conditions was obtained for different gas mixtures containing methane, nitrogen and carbon dioxide. The new correlation is proposed for a pressure range of 1.7-330 MPa, a temperature range of 273-320 K, and for gas mixtures with specific gravity range of 0.553 to 1. The nonlinear regression technique was applie
In this paper, we introduce and discuss an algorithm for the numerical solution of two- dimensional fractional dispersion equation. The algorithm for the numerical solution of this equation is based on explicit finite difference approximation. Consistency, conditional stability, and convergence of this numerical method are described. Finally, numerical example is presented to show the dispersion behavior according to the order of the fractional derivative and we demonstrate that our explicit finite difference approximation is a computationally efficient method for solving two-dimensional fractional dispersion equation
In This paper generalized spline method and Caputo differential operator is applied to solve linear fractional integro-differential equations of the second kind. Comparison of the applied method with exact solutions reveals that the method is tremendously effective.
Well-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.
<span lang="EN-US">This paper presents the comparison between optimized unscented Kalman filter (UKF) and optimized extended Kalman filter (EKF) for sensorless direct field orientation control induction motor (DFOCIM) drive. The high performance of UKF and EKF depends on the accurate selection of state and noise covariance matrices. For this goal, multi objective function genetic algorithm is used to find the optimal values of state and noise covariance matrices. The main objectives of genetic algorithm to be minimized are the mean square errors (MSE) between actual and estimation of speed, current, and flux. Simulation results show the optimal state and noise covariance matrices can improve the estimation of speed, current, t
... Show MoreA few examinations have endeavored to assess a definitive shear quality of a fiber fortified polymer (FRP)- strengthened solid shallow shafts. Be that as it may, need data announced for examining the solid profound pillars strengthened with FRP bars. The majority of these investigations don't think about the blend of the rigidity of both FRP support and cement. This examination builds up a basic swagger adequacy factor model to evaluate the referenced issue. Two sorts of disappointment modes; concrete part and pulverizing disappointment modes were examined. Protection from corner to corner part is chiefly given by the longitudinal FRP support, steel shear fortification, and cement rigidity. The proposed model has been confirmed util
... Show More
The heterogeneity nature of carbonate reservoirs shows sever scattering of the data, therefore, one has to be cautious in using the permeability- porosity correlation for calculating permeability unless a good correlation coefficient is available. In addition, a permeability- porosity correlation technique is not enough by itself since simulation studies also require more accurate tools for reservoir description and diagnosis of flow and non-flow units.
Evaluation of reservoir characterization was conducted by this paper for Mishrif Formation in south Iraqi oil field (heterogeneous carbonate reservoir), namely the permeability-porosity correlation, the hydraulic units (HU’s) an
... Show More