In the recent decade, injection of nanoparticles (NPs) into underground formation as liquid nanodispersions has been suggested as a smart alternative for conventional methods in tertiary oil recovery projects from mature oil reservoirs. Such reservoirs, however, are strong candidates for carbon geo-sequestration (CGS) projects, and the presence of nanoparticles (NPs) after nanofluid-flooding can add more complexity to carbon geo-storage projects. Despite studies investigating CO2 injection and nanofluid-flooding for EOR projects, no information was reported about the potential synergistic effects of CO2 and NPs on enhanced oil recovery (EOR) and CGS concerning the interfacial tension (γ) of CO2-oil system. This study thus extensively investigates the effect of silica NPs on the γ of CO2/decane system at elevated pressure and temperature to recognise the potential impact of NPs-injection on the future CGS projects. To achieve this, a wide-ranging series of tests have been conducted to reveal the role of hydrophilic and hydrophobic silica NPs on γ of the CO2/oil system. n-decane was utilized as model oil and different amounts of NPs were mixed with the oil phase. Oil-NPs dispersions were formulated using an ultrasonic homogenizer. The γ of the CO2/oil system was measured at different pressures (0.1 to 20 MPa) and temperatures (25 to 70 °C) using a high-pressure temperature optical cell. The γ data were measured using the pendant drop technique via axisymmetric drop shape analysis (ADSA). The results showed that, generally, CO2/oil γ subjected mainly to pressure, temperature, and with less extent to NPs load in the oil phase. γ decreases with increased pressure until reaching a plateau where no more significant decrease in γ was observed. The γ trend with increased temperature, on the other hand, was more completed. No significant impact of temperature on γ was recorded with low pressure (≤ 5 MPa). Similarly, at relatively high pressure (≥ 25 MPa), only a slight variation of IFT with temperature change was recorded. However, for the pressure range from 5 – 25 MPa, IFT was increased remarkably with temperature. Furthermore, NPs in the oil phase exhibit a remarkable influence on IFT. In this context, the presence of hydrophilic silica NPs in the oil phase can significantly reduce the γ of the CO2/decane system. However, hydrophobic silica NPs showed less influence on IFT reduction. The outcomes of this work afford good understandings into applications of NP for EOR and CGS applications and help to de-risk CO2-geological storage projects.
CO2 Laser (10600nm) is the recent method in the management of challenging skin scar resulting from trauma, burn and surgical wound. The aim of this study was to evaluate the efficacy & safety of fractional CO2 laser (10600nm) in treatment of skin scar. Materials and Methods:Twenty patients with different types of scars treated with fractional CO2 (10600nm) laser, (10 patients) were given additional intralesional Triamcinolone. Results: All of the twenty patients included in this study showed some sort of improvements in scar texture, height and pliability and all of the ten patients who received intralesional Triamcinolone after laser show complete satisfaction. Conclusion:Fractional CO2 (10600nm) laser can be used as alternative, ef
... Show MoreOil from Brassca campestris (local variety) was extracted with hexane using Soxhlet. The extracted oil was characterized and its antimicrobial activity was determined as well. The content of extracted oil was 40% with 0.5% of volatile oil .Oil was immiscible with polar solvent such as ethanol, acetone and water, while it was easily miscible with chloroform due to its hydrophobicity. The result of organoleptic tests revealed that the oil is clear yellow in color and odorless with acceptable taste. The oil was stable at 4 -25 C? for a month. Refractive index (RI) of oil was 1.4723 with density of 0.914, [both at 4-25 C?]. Boiling point 386 C?. Infra red spectroscopy (IR) indicated the presence of different chemical groups (C=C
... Show MoreBackground: This study aims to investigate the effect of fixed orthodontic appliances and/or antihypertensive drugs on the weight of experimental rats. Materials and Methods: Thir-ty-six male Wistar albino rats were subjected to a split-mouth design study, in which an orthodontic appliance was inserted in one side to move the first molar mesially for 2 weeks while the other side acted as a control to tooth movement. The rats were allocated into three groups: group A (n = 12), without any pharmacological treatment; group B (n = 12), subcu-taneous injection of bisoprolol fumarate (5 mg/kg) daily; and group C (n = 12), subcutaneous injection of valsartan (10 mg/kg) daily. A fixed orthodontic appliance with a closing coil spring delivering 5
... Show MoreIn this study, manganese dioxide (MnO₂) nanoparticles (NPs) were synthesized via the hydrothermal method and utilized for the adsorption of Janus green dye (JG) from aqueous solutions. The effects of MnO₂ NPs on kinetics and diffusion were also analyzed. The synthesized NPs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), and Fourier-transform infrared spectroscopy (FT-IR), with XRD confirming the nanoparticle size of 6.23 nm. The adsorption kinetics were investigated using three models: pseudo-first-order (PFO), pseudo-second-order (PSO), and the intraparticle diffusion model. The PSO model provided the best fit (R² = 0.999), indicating that the adsorpti
... Show MoreBackground In recent years, there has been a notable increase in the level of attention devoted to exploring capabilities of nanoparticles, specifically gold nanoparticles AuNPs, within context of modern times. AuNPs possess distinct biophysical properties, as a novel avenue as an antibacterial agent targeting Streptococcus Mutans and Candida Albicans. The aim of this study to create a nano-platform that has the potential to be environmentally sustainable, in addition to exhibiting exceptional antimicrobial properties against Streptococcus Mutans as well as Candida Albicans. Methods this study involved utilization of
The matter of handwritten text recognition is as yet a major challenge to mainstream researchers. A few ways deal with this challenge have been endeavored in the most recent years, for the most part concentrating on the English pre-printed or handwritten characters space. Consequently, the need to effort a research concerning to Arabic texts handwritten recognition. The Arabic handwriting presents unique technical difficulties because it is cursive, right to left in writing and the letters convert its shapes and structures when it is putted at initial, middle, isolation or at the end of words. In this study, the Arabic text recognition is developed and designed to recognize image of Arabic text/characters. The proposed model gets a single l
... Show MoreThis paper presents designing an adaptive state feedback controller (ASFC) for a magnetic levitation system (MLS), which is an unstable system and has high nonlinearity and represents a challenging control problem. First, a nonadaptive state feedback controller (SFC) is designed by linearization about a selected equilibrium point and designing a SFC by pole-placement method to achieve maximum overshoot of 1.5% and settling time of 1s (5% criterion). When the operating point changes, the designed controller can no longer achieve the design specifications, since it is designed based on a linearization about a different operating point. This gives rise to utilizing the adaptive control scheme to parameterize the state feedback controll
... Show MoreCO2 geo-storage efficiency is strongly influenced by the wettability of the CO2-brine-mineral system. With decreasing water-wetness, both, structural and residual trapping capacities are substantially reduced. This constitutes a serious limitation for CO2 storage particularly in oil-wet formations (which are CO2-wet). To overcome this, we treated CO2-wet calcite surfaces with nanofluids (nanoparticles dispersed in base fluid) and found that the systems turned strongly water-wet state, indicating a significant wettability alteration and thus a drastic improvement in storage potential. We thus conclude that CO2 storage capacity can be significantly enhanced by nanofluid priming.