This article proposes a new technique for determining the rate of contamination. First, a generative adversarial neural network (ANN) parallel processing technique is constructed and trained using real and secret images. Then, after the model is stabilized, the real image is passed to the generator. Finally, the generator creates an image that is visually similar to the secret image, thus achieving the same effect as the secret image transmission. Experimental results show that this technique has a good effect on the security of secret information transmission and increases the capacity of information hiding. The metric signal of noise, a structural similarity index measure, was used to determine the success of colour image-hiding techniques within ANN. The results of the ANN were in sequence: 41.2813, 0.6914. The results of the ANN were in sequence 41.2813, 0.6914. These results provide insights into how well the hidden information is concealed within the image and the extent to which the visual integrity of the image is preserved.
In Automatic Speech Recognition (ASR) the non-linear data projection provided by a one hidden layer Multilayer Perceptron (MLP), trained to recognize phonemes, and has previous experiments to provide feature enhancement substantially increased ASR performance, especially in noise. Previous attempts to apply an analogous approach to speaker identification have not succeeded in improving performance, except by combining MLP processed features with other features. We present test results for the TIMIT database which show that the advantage of MLP preprocessing for open set speaker identification increases with the number of speakers used to train the MLP and that improved identification is obtained as this number increases beyond sixty.
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreThe objective of this work is to design and implement a cryptography system that enables the sender to send message through any channel (even if this channel is insecure) and the receiver to decrypt the received message without allowing any intruder to break the system and extracting the secret information. In this work, we implement an interaction between the feedforward neural network and the stream cipher, so the secret message will be encrypted by unsupervised neural network method in addition to the first encryption process which is performed by the stream cipher method. The security of any cipher system depends on the security of the related keys (that are used by the encryption and the decryption processes) and their corresponding le
... Show MoreAbstract:-
The approach maintenance and replacement one of techniques of operations research whom cares of the failure experienced by a lot of production lines which consist of a set of machines and equipment, which in turn exposed to the failure or work stoppages over the lifetime, which requires reducing the working time of these machines or equipment below what can or conuct maintenance process once in a while or a replacement for one part of the machine or replace one of the machines in production lines. In this research is the study of the failure s that occur in some parts of one of the machines for the General Company for Vege
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through tha
... Show MoreUsing the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The result
... Show MoreIn the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show MoreThe aim of the study was to know the factors analysis of scale Bar-On & Parker, post analysis is found fourteen factors for the first degree of the scale. Also we extracted five factors from the second degree.
The scale consists of (60) items , applied on sample of (200) students (Male &Female ) age (15-18) years randomly chosen from preparatory schools . The scale unveiled satis factors validity and reliability. An others aims is to low the emotional Intelligence level and know the difference of statistical in sex , age variable and the specialization variable .The result was no difference of statistical in sex and specialization variable , but the difference appear
... Show More