This article proposes a new technique for determining the rate of contamination. First, a generative adversarial neural network (ANN) parallel processing technique is constructed and trained using real and secret images. Then, after the model is stabilized, the real image is passed to the generator. Finally, the generator creates an image that is visually similar to the secret image, thus achieving the same effect as the secret image transmission. Experimental results show that this technique has a good effect on the security of secret information transmission and increases the capacity of information hiding. The metric signal of noise, a structural similarity index measure, was used to determine the success of colour image-hiding techniques within ANN. The results of the ANN were in sequence: 41.2813, 0.6914. The results of the ANN were in sequence 41.2813, 0.6914. These results provide insights into how well the hidden information is concealed within the image and the extent to which the visual integrity of the image is preserved.
The study was conducted in the Tigris River in Baghdad during May 2021 until March 2022 to follow the impact of climate change, rising temperatures, and the presence of pollutants on the dynamics of phytoplankton and some physicochemical variables from four sites. The results showed that the climatic conditions during different seasons, in addition to the nature of the sampling sites, have a clear and significant impact on the studied traits and, in turn, affect the phytoplankton community. The highest average temperature (30.67 ˚C) was recorded; the pH values ranged between 8.70 & 6.75; the electrical conductivity (1208.18-770.11 µS/cm ) and the total dissolved solids (TDS) (778.95- 439.49 mg/L) were evaluated. Upon measuring
... Show MoreIn this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For
... Show MoreThis paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue
... Show MoreSludge worm samples were collected from the Tigers River sediment during the period from November 2018 to June 2019 in Al Sarafiya District/ Baghdad- Iraq. Biometric morphological measurements focusing on the form of penis sheath and chaetal morphology were used for species identification, in addition to molecular analysis by amplification of conserved 18s rRNA encoding gene using ITS1 and ITS4 universal primers.According to the morphological measurement records, the results revealed the existence of Limnodrilus hoffmeisteri Claparede 1862, L. claparedeianus Ratzel, 1868 and L. cervix Brinkhurst 1963. Other two groups of specimens, with short penis sheath, were identified by molecular technology as L
Prediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered
... Show MoreMaintenance of hospital buildings and its management are regarded as an important subject which needs attention because hospital buildings are service institutions which are very important to a society, requiring the search for the best procedure to develop maintenance in hospitals. The research is aimed to determine an equation to estimate the annual maintenance cost for public hospital. To achieve this aim, Al-Sader City Hospital maintenance system in Al-Najaf province has been studied with its main elements through survey of data, records and reports relating to maintenance during the years of the study 2008-2014 and to identify the strengths, weaknesses, opportunities and threat points in the current system through Swat analysi
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreThe finishing operation of the electrochemical finishing technology (ECF) for tube of steel was investigated In this study. Experimental procedures included qualitative
and quantitative analyses for surface roughness and material removal. Qualitative analyses utilized finishing optimization of a specific specimen in various design and operating conditions; value of gap from 0.2 to 10mm, flow rate of electrolytes from 5 to 15liter/min, finishing time from 1 to 4min and the applied voltage from 6 to 12v, to find out the value of surface roughness and material removal at each electrochemical state. From the measured material removal for each process state was used to verify the relationship with finishing time of work piece. Electrochemi