Abstract Background: Timely diagnosis of periodontal disease is crucial for restoring healthy periodontal tissue and improving patients’ prognosis. There is a growing interest in using salivary biomarkers as a noninvasive screening tool for periodontal disease. This study aimed to investigate the diagnostic efficacy of two salivary biomarkers, lactate dehydrogenase (LDH) and total protein, for periodontal disease by assessing their sensitivity in relation to clinical periodontal parameters. Furthermore, the study aimed to explore the impact of systemic disease, age, and sex on the accuracy of these biomarkers in the diagnosis of periodontal health. Materials and methods: A total of 145 participants were categorized into three groups based on their basic periodontal examination index, with 20 in the periodontally healthy group, 50 in the gingivitis group, and 75 in the periodontitis group. Salivary LDH was measured using the rate of nicotinamide adenine dinucleotide (NADH) oxidation, to measure the kinetics of LDH activity, while total protein was measured using the Lowry method. Descriptive and analytical statistical analyses were performed to examine the associations between the variables and biomarkers. Results: The results of the study demonstrated that salivary LDH was 72% sensitive, while salivary total protein was 78% sensitive in correlation to clinical periodontal parameters. The accuracy of the test was not influenced by sex, but age had a significant effect on both biomarkers, particularly LDH. Systemic disease was another factor that significantly affected the accuracy of the test. Conclusions: Although salivary LDH and total protein show promise as biomarkers for screening periodontal disease, their interpretation may be impacted by age and systemic disease.
The blade pitch angle (BPA) controller is key factor to improve the power generation of wind turbine (WT). Due to the aerodynamic structural behavior of the rotor blades, wind turbine system performance is influenced by pitch angle and environmental conditions such as wind speed, which fluctuate throughout the day. Therefore, to overcome the pitch angle control (PAC) problem, high wind speed conditions, and due to type-1 and type-2 fuzzy logic limitations for handling high levels of uncertainty, the newly proposed optimal hybrid type-3 fuzzy logic controller has been applied and compared since type-3 fuzzy controllers utilize three-dimensional membership functions, unlike type-2 and type-1 fuzzy logic controllers. In this paper six differen
... Show MoreCloud-based Electronic Health Records (EHRs) have seen a substantial increase in usage in recent years, especially for remote patient monitoring. Researchers are interested in investigating the use of Healthcare 4.0 in smart cities. This involves using Internet of Things (IoT) devices and cloud computing to remotely access medical processes. Healthcare 4.0 focuses on the systematic gathering, merging, transmission, sharing, and retention of medical information at regular intervals. Protecting the confidential and private information of patients presents several challenges in terms of thwarting illegal intrusion by hackers. Therefore, it is essential to prioritize the protection of patient medical data that is stored, accessed, and shared on
... Show MoreThe thermal and electrical performance of different designs of air based hybrid photovoltaic/thermal collectors is investigated experimentally and theoretically. The circulating air is used to cool PV panels and to collect the absorbed energy to improve their performance. Four different collectors have been designed, manufactured and instrumented namely; double PV panels without cooling (model I), single duct double pass collector (model II), double duct single pass (model III), and single duct single pass (model IV) . Each collector consists of: channel duct, glass cover, axial fan to circulate air and two PV panel in parallel connection. The temperature of the upper and
... Show More