Abstract Background: Timely diagnosis of periodontal disease is crucial for restoring healthy periodontal tissue and improving patients’ prognosis. There is a growing interest in using salivary biomarkers as a noninvasive screening tool for periodontal disease. This study aimed to investigate the diagnostic efficacy of two salivary biomarkers, lactate dehydrogenase (LDH) and total protein, for periodontal disease by assessing their sensitivity in relation to clinical periodontal parameters. Furthermore, the study aimed to explore the impact of systemic disease, age, and sex on the accuracy of these biomarkers in the diagnosis of periodontal health. Materials and methods: A total of 145 participants were categorized into three groups based on their basic periodontal examination index, with 20 in the periodontally healthy group, 50 in the gingivitis group, and 75 in the periodontitis group. Salivary LDH was measured using the rate of nicotinamide adenine dinucleotide (NADH) oxidation, to measure the kinetics of LDH activity, while total protein was measured using the Lowry method. Descriptive and analytical statistical analyses were performed to examine the associations between the variables and biomarkers. Results: The results of the study demonstrated that salivary LDH was 72% sensitive, while salivary total protein was 78% sensitive in correlation to clinical periodontal parameters. The accuracy of the test was not influenced by sex, but age had a significant effect on both biomarkers, particularly LDH. Systemic disease was another factor that significantly affected the accuracy of the test. Conclusions: Although salivary LDH and total protein show promise as biomarkers for screening periodontal disease, their interpretation may be impacted by age and systemic disease.
Water saturation is the most significant characteristic for reservoir characterization in order to assess oil reserves; this paper reviewed the concepts and applications of both classic and new approaches to determine water saturation. so, this work guides the reader to realize and distinguish between various strategies to obtain an appropriate water saturation value from electrical logging in both resistivity and dielectric has been studied, and the most well-known models in clean and shaly formation have been demonstrated. The Nuclear Magnetic Resonance in conventional and nonconventional reservoirs has been reviewed and understood as the major feature of this approach to estimate Water Saturation based on T2 distribution. Artific
... Show MoreWastewater projects are one of the most important infrastructure projects, which require developing strategic plans to manage these projects. Most of the wastewater projects in Iraq don’t have a maintenance plan. This research aims to prepare the maintenance management plan (MMP) for wastewater projects. The objective of the research is to predict the cost and time of maintenance projects by building a model using ANN. The research sample included (15) completed projects in Wasit Governorate, where the researcher was able to obtain the data of these projects through the historical information of the Wasit Sewage Directorate. In this research artificial neural networks (ANN) technique was used to build two models (cost
... Show MoreThe research focuses on determination of best location of high elevated tank using the required head of pump as a measure for this purpose. Five types of network were used to find the effect of the variation in the discharge and the node elevation on the best location. The most weakness point was determined for each network. Preliminary tank locations were chosen for test along the primary pipe with same interval distance. For each location, the water elevation in tank and pump head was calculated at each hour depending on the pump head that required to achieve the minimum pressure at the most weakness point. Then, the sum of pump heads through the day was determined. The results proved that there is a most economical lo
... Show MoreThe convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreIn this paper, an Integral Backstepping Controller (IBC) is designed and optimized for full control, of rotational and translational dynamics, of an unmanned Quadcopter (QC). Before designing the controller, a mathematical model for the QC is developed in a form appropriate for the IBC design. Due to the underactuated property of the QC, it is possible to control the QC Cartesian positions (X, Y, and Z) and the yaw angle through ordering the desired values for them. As for the pitch and roll angles, they are generated by the position controllers. Backstepping Controller (BC) is a practical nonlinear control scheme based on Lyapunov design approach, which can, therefore, guarantee the convergence of the position tracking
... Show MoreThe green synthesis of nickel oxide nanoparticles (NiO-NP) was investigated using Ni(NO3)2 as a precursor, olive tree leaves as a reducing agent, and D-sorbitol as a capping agent. The structural, optical, and morphology of the synthesized NiO-NP have been characterized using ultraviolet–visible spectroscopy (UV-Vis), X-ray crystallography (XRD) pattern, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) analysis. The SEM analysis showed that the nanoparticles have a spherical shape and highly crystalline as well as highly agglomerated and appear as cluster of nanoparticles with a size range of (30 to 65 nm). The Scherrer relation has been used to estimate the crystallite size of NiO-NP which ha
... Show MoreInduced EF is among the most important of advanced oxidation processes (AOPs) It was employed to treat different kinds of wastewater. In the present review, the types and mechanism of induced EF were outlined. Parameters affecting this process have been mentioned with details. These are current density, pH, H2O2 concentration, and time. The application of induced electro Fenton in various sectors of industries like textile, petroleum refineries, and pharmaceutical were outlined. The outcomes of this review demonstrate the vital role of induced EF in treatment of wastewater at high efficiency and low cost in contrast with conventional technique
A UV-Vis spectrophotometry method was developed for the determination of metoclopramide hydrochloride in pure and several pharmaceutical preparations, such as Permosan tablets, Meclodin syrups, and Plasil ampoules. The method is based on the diazotization reaction of metoclopramide hydrochloride with sodium nitrate and hydrochloric acid to yield the diazonium salt, which is then reacted with 3,5-dimethyl phenol in the presence of sodium hydroxide to form a yellow azo dye. Calibration curves were linear in the range from 0.3 to 6.5 µg/mL, with a correlation coefficient of 0.9993. The limits of detection and quantification were determined and found to be 0.18 and 0.61 µg/mL, respectively. Accuracy and precision were also determined b
... Show More