Crude oil still affects many countries because it is one of the essential fuel sources. It makes life more manageable in modern communities and cannot be overstated because it is easy to use and find. However, the pollution caused by its use in industries such as mining, transportation, and the oil and gas business, especially soil pollution, cannot be ignored. Soil pollution is an issue in most communities because it influences people and ecology. Accidental infusions and spills of ore oils are prevalent occurrences leading to the entire or fractional exchange of the soil pore fluid by oil-contaminated soils that have affected the geotechnical engineering properties. The liquid limitations for polluted soil grades silty loam and sandy loam decreased by 38% and 16%. Oil contamination leads to decreased permeability; the permeability values for sandy loam soil decreased from (3.6 × 10−6 to 0.25 × 10−6 cm/s) when the oil content increased from 0 to 16%; however, the permeability values for silty loam decreased from (2.6 × 10−6 to 0.25 × 10−6) cm. The current study results exhibit that the geotechnical properties of contaminated soil with oil slag can be modified upon adding cement at different weight percentages (3, 5, and 7%) to the soil. The Atterberg limits and specific gravity of the soil were noticeably reduced when it was stabilised with cement, as well as because oil spills on soil significantly influence the environment. So, there is an immediate and critical need for efficiently removing petroleum hydrocarbon pollutants from contaminated soil. Bioremediation is a new technology gaining interest worldwide to clean up sites that have polluted petroleum hydrocarbons.
Microfluidic devices provide distinct benefits for developing effective drug assays and screening. The microfluidic platforms may provide a faster and less expensive alternative. Fluids are contained in devices with considerable micrometer-scale dimensions. Owing to this tight restriction, drug assay quantities are minute (milliliters to femtoliters). In this research, a microfluidic chip consisting of micro-channels carved on substrate materials built using an Acrylic (Polymethyl Methacrylate, PMMA) chip was designed using a Carbon Dioxide (CO2) laser machine. The CO2 parameters influence the chip’s width, depth, and roughness. To have a regular channel surface, and low roughness, the laser power (60 W), with scanning speed (250 m/s)
... Show MoreIn the present study, activated carbon supported metal oxides was prepared for thiophene removal from model fuel (Thiophene in n-hexane) using adsorptive desulfurization technique. Commercial activated carbon was loaded individually with copper oxide in the form of Cu2O/AC. A comparison of the kinetic and isotherm models of the sorption of thiophene from model fuel was made at different operating conditions including adsorbent dose, initial thiophene concentration and contact time. Various adsorption rate constants and isotherm parameters were calculated. Results indicated that the desulfurization was enhanced when copper was loaded onto activated carbon surface. The highest desulfurization percent for Cu2O/AC and o
... Show MoreThis research sought to present a concept of cross-sectional data models, A crucial double data to take the impact of the change in time and obtained from the measured phenomenon of repeated observations in different time periods, Where the models of the panel data were defined by different types of fixed , random and mixed, and Comparing them by studying and analyzing the mathematical relationship between the influence of time with a set of basic variables Which are the main axes on which the research is based and is represented by the monthly revenue of the working individual and the profits it generates, which represents the variable response And its relationship to a set of explanatory variables represented by the
... Show MoreThe present work investigates the effect of magneto – hydrodynamic (MHD) laminar natural convection flow on a vertical cylinder in presence of heat generation and radiation. The governing equations which used are Continuity, Momentum and Energy equations. These equations are transformed to dimensionless equations using Vorticity-Stream Function method and the resulting nonlinear system
of partial differential equations are then solved numerically using finite difference approximation. A thermal boundary condition of a constant wall temperature is considered. A computer program (Fortran 90) was built to calculate the rate of heat transfer in terms of local Nusselt number, total mean Nusselt number, velocity distribution as well as te
The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreThis paper was aimed to evaluate the polyurethane (PU) and polyurethane/polyvinyl chloride (90 wt. % / 10 wt. %) as organic coating of carbon steel substrate against marine environment (3.5 wt.% NaCl aqueous solution) as a severe corrosion environment . The electrochemical impedance spectroscopy (EIS) and fitting impedance data by ZsimpWin 3.22 software were used to estimate the physical barrier of the samples for different exposure times. Different equivalent electrical circuits were proposed for the physical barrier at different immersion times to get appropriate fitting .Both PU and PU/PVC coatings showed excellent corrosion protection ability for steel .The PU/PVC coating showed better protection and stability than PU coating against
... Show MoreError control schemes became a necessity in network-on-chip (NoC) to improve reliability as the on-chip interconnect errors increase with the continuous shrinking of geometry. Accordingly, many researchers are trying to present multi-bit error correction coding schemes that perform a high error correction capability with the simplest design possible to minimize area and power consumption. A recent work, Multi-bit Error Correcting Coding with Reduced Link Bandwidth (MECCRLB), showed a huge reduction in area and power consumption compared to a well-known scheme, namely, Hamming product code (HPC) with Type-II HARQ. Moreover, the authors showed that the proposed scheme can correct 11 random errors which is considered a high
... Show MoreThe remove of direct blue (DB71) anionic dye on flint clay in aqueous solution was investigated by using a batch system for various dye concentrations. The contact time, pH, adsorbent dose, and temperature was studied under batch adsorption technique. The data of adsorption equilibrium fit with isotherm Langmuar and Freiundlich ,when the correlation coefficient used to elucidate the best fitting isotherm model. The thermodynamic parameters such as, ?Hº ,?Sº and ?Gº. Thermodynamic analysis indicated that the sorption of the dyes onto Flint clay was endothermic and spontaneous.