In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from the whole features set. Thus, it obtains efficient botnet detection results in terms of F-score, precision, detection rate, and number of relevant features, when compared with DT alone.
One of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first
... Show MoreAlongside the development of high-speed rail, rail flaw detection is of great importance to ensure railway safety, especially for improving the speed and load of the train. Several conventional inspection methods such as visual, acoustic, and electromagnetic inspection have been introduced in the past. However, these methods have several challenges in terms of detection speed and accuracy. Combined inspection methods have emerged as a promising approach to overcome these limitations. Nondestructive testing (NDT) techniques in conjunction with artificial intelligence approaches have tremendous potential and viability because it is highly possible to improve the detection accuracy which has been proven in various conventional nondestr
... Show MoreThis research presents a model for surveying networks configuration which is designed and called a Computerized Integrated System for Triangulation Network Modeling (CISTNM). It focuses on the strength of figure as a concept then on estimating the relative error (RE) for the computed side (base line) triangulation element. The CISTNM can compute the maximum elevations of the highest
obstacles of the line of sight, the observational signal tower height, the contribution of each triangulation station with their intervisibility test and analysis. The model is characterized by the flexibility to select either a single figure or a combined figures network option. Each option includes three other implicit options such as: triangles, quadri
Hydroponics is the cultivation of plants by utilizing water without using soil which emphasizes the fulfillment of the nutritional needs of plants. This research has introduced smart hydroponic system that enables regular monitoring of every aspect to maintain the pH values, water, temperature, and soil. Nevertheless, there is a lack of knowledge that can systematically represent the current research. The proposed study suggests a systematic literature review of smart hydroponics system to overcome this limitation. This systematic literature review will assist practitioners draw on existing literature and propose new solutions based on available knowledge in the smart hydroponic system. The outcomes of this paper can assist future r
... Show MoreNowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show More
Early detection of eye diseases can forestall visual deficiency and vision loss. There are several types of human eye diseases, for example, diabetic retinopathy, glaucoma, arteriosclerosis, and hypertension. Diabetic retinopathy (DR) which is brought about by diabetes causes the retinal vessels harmed and blood leakage in the retina. Retinal blood vessels have a huge job in the detection and treatment of different retinal diseases. Thus, retinal vasculature extraction is significant to help experts for the finding and treatment of systematic diseases. Accordingly, early detection and consequent treatment are fundamental for influenced patients to protect their vision. The aim of this paper is to detect blood vessels from
... Show MoreFive Saccharomyces cerevisiae isolated from the ability of chitinase production from the isolates were studied. Quantitative screening appeared that Saccharomyces cerevisiae S4 was the highest chitinase producer specific activity 1.9 unit/mg protein. The yeast was culture in liquid and solid state fermentation media (SSF). Different plant obstanases were used for (SSF) with the chitine, while liquid media contained chitine with the diffrented nitrogen source. The favorable condition for chitinase producers were incubated at 30 ºC at pH 6 and 1% colloidal chitine.
Due to its association with hepatocellular carcinoma and being one of the ten most common malignancies worldwide, hepatitis C viral infection has become a severe public health concern. Therefore, establishing an accurate, reliable and sensitive diagnostic test for this infection is strongly advised. Real-time polymerase chain reaction (PCR) has been created to achieve this purpose. The current study was established to investigate the hepatitis C virus among Iraqi patients with chronic renal failure and to detect the virus immunologically by the fourth generation enzyme-linked immunosorbent assay technique and molecularly by real-time PCR. As a result, out of 50 patients with chronic renal failure undergoing dialysis, 39 patients tes
... Show More