In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from the whole features set. Thus, it obtains efficient botnet detection results in terms of F-score, precision, detection rate, and number of relevant features, when compared with DT alone.
Background: Ultrasound is a valuable tool for evaluating fetal problems throughout pregnancy. Amniotic fluid anomalies have been associated with unfavorable maternal, fetal, and obstetrical outcomes. Objective: To determine the effect of echogenic amniotic fluid during term pregnancy on the presence of meconium stain liquor and pregnancy outcome. Methods: A cross-sectional study was conducted on 1080 term pregnant women who visited Al-Elwiya Maternity Teaching Hospital from May 1st, 2021, to May 1st, 2023. Ultrasound was used to analyze echogenic amniotic fluid and turbid liquor. The liquor state was tested either after an artificial membrane rupture in the vaginal delivery trial or during a cesarean section. Results: Echogenic amni
... Show MoreHeart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix
... Show MoreAccording to the prevalence of multidrug resistance bacteria, especially Pseudomonas aeruginosa, in which the essential mechanism of drug resistance is the ability to possess an efflux pump by which extrusion of antimicrobial agents usually occurs, this study aims to detect the presence of mexB multidrug efflux gene in some local isolates of this bacteria that show resistance towards three antibiotics, out of five. Sensitivity test to antibiotics was performed on all isolates by using meropenem (10μg/disc), imipenem (10μg/disc), amikacin (30 μg/disc), ciprofloxacin (5μg/disc) and ceftazidime (30 μg/disc). Conventional PCR results showed the presence of mexB gene (244bp) in four isolates out of ten (40%). In addition,25, 50μg/ml of cur
... Show MoreMost recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)
Software-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show More