In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from the whole features set. Thus, it obtains efficient botnet detection results in terms of F-score, precision, detection rate, and number of relevant features, when compared with DT alone.
Pavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels wit
... Show MoreThe rapid rise in the use of artificially generated faces has significantly increased the risk of identity theft in biometric authentication systems. Modern facial recognition technologies are now vulnerable to sophisticated attacks using printed images, replayed videos, and highly realistic 3D masks. This creates an urgent need for advanced, reliable, and mobile-compatible fake face detection systems. Research indicates that while deep learning models have demonstrated strong performance in detecting artificially generated faces, deploying these models on consumer mobile devices remains challenging due to limitations in computing power, memory, privacy, and processing speed. This paper highlights several key challenges: (1) optimiz
... Show MoreThe present study aimed to determine the genetic divergence of seven maize genotypes (Al-Maha, Sumer, Al-Fajr, Baghdad, 5018, 4 × 1 single hybrid, and 4 × 2 single hybrid) under two varied levels of nitrogen fertilization (92 and 276 kg N ha-1). The experiment occurred in 2022 in a randomized complete block design (RCBD) with a split-plot arrangement and three replications at the College of Agricultural Engineering Sciences, University of Baghdad, Iraq. The nitrogen fertilization levels served as main plots, with the maize genotypes allocated as the subplots. The results revealed that genetic variance was higher than the environmental variance for most traits, and the coefficient of phenotypic variation was close to the genetic va
... Show MoreThis study was carried out to assess genetic diversity of ten cultivars of Rice (Oryza sativa L.). One of DNA markers based on Polymerase Chain Reaction (PCR) was used namely DAF markers (DNA Amplification Fingerprint). Six primers were tested, the results showed, that no amplification products using the primers OPD.14 and OPM.5. Two primers (OPX.8 and OPT.2) produced monomorphic band across all cultivars, while only two primers generated polymorphic bands. The number of total bands produced from one of them (OPN.7) were sixteen. Also this primer produced ten polymorphic profiles (DAF patterns) which were unique to the ten cultivars that could be distinguished. The number of total bands generated by primer OPX.1 were thirteen and this prim
... Show More