Background. Aneurysms of the distal anterior cerebral artery (DACA) are uncommon; they often form near the pericallosal-callosomarginal junction and are typically small. To our knowledge, giant DACA aneurysms developing from the more distant parts of the anterior cerebral artery (ACA), A4-5, have been described only once in the literature. Case description. A 66-year-old gentleman reported with a brief loss of consciousness followed by weakness in his right lower leg. The patient was admitted with a Glasgow Coma Score (GCS) of 15. A computed tomography (CT) scan of the head revealed a left hyperdense mass in the frontal parasagittal supracallosal region. Contrast MRI revealed a heterogeneously enhancing mass measuring 35x30x25 mm. CT angiography (CTA) revealed a small saccular aneurysm on the posteromedial aspect of the mass, perpendicular to the vertical plane of the coronal suture, corresponding to the A4-A5 junction of the left ACA. Through a left paramedian craniotomy, a modified anterior interhemispheric approach that was more posterior than the conventional projection was performed. A giant partially thrombosed was found. The aneurysm was resected, and the neck was reconstructed using four clips placed on top of them to enhance the clipping force over any remaining thrombus. The patient recovered as expected and was neurologically intact three months later. Conclusion. Giant distal anterior cerebral artery (DACA) aneurysms found in the A4-A5 segment represent a pathologically uncommon phenomenon. Due to the rarity of giant aneurysms at this location, their reporting is important to inform meticulous pre-operative planning.
According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
Three-dimensional cavity was investigated numerical in the current study filled with porous medium from a saturated fluid. The problem configuration consists of two insulated bottom and right wall and left vertical wall maintained at constant temperatures at variable locations, using two discretized heaters. The porous cavity fluid motion was represented by the momentum equation generalized model. The present investigation thermophysical parameters included the local thermal equilibrium condition. The isotherms and streamlines was used to examine energy transport and momentum. The meaning of changing parameters on the established average Nusselt number, temperature and velocity distribution are highlighted and discussed.
In this paper, chip and powder copper are used as reinforcing phase in polyester matrix to form composites. Mechanical properties such as flexural strength and impact test of polymer reinforcement copper (powder and chip) were done, the maximum flexural strength for the polymer reinforcement with copper (powder and chip) are (85.13 Mpa) and (50.08 Mpa) respectively was obtained, while the maximum observation energy of the impact test for the polymer reinforcement with copper (powder and chip) are (0.85 J) and (0.4 J) respectively
This article introduces a numerical study on heat exchange and corrosion coefficients of Zinc–water nanofluid stream in a circular tube fitted with swirl generator utilizing CFD emulation. Different forms of swirl generator which have the following properties of plain twisted tape (PTT) and baffle wings twisted tape (BTT) embeds with various ratio of twisting (y = 2.93, 3.91 and 4.89), baffle inclination angles (β = 0°, - 30° and 30) joined with 1%, 1.5% and 2% volume fraction of ZnO nanofluid were utilized for simulation. The results demonstrated that the heat and friction coefficients conducted by these two forms of vortex generator raised with Reynolds number, twist ratio and baffle inclination angles decreases. Likewise, t
... Show MoreMechanical degradation hampers the practical usage of polymers for turbulent drag reduction
application. Mechanical degradation refers to the chemical process in which the activation energy of
polymer chain scission is exceeded by mechanical action on the polymer chain, and bond rupture
occurs. When a water-soluble polymer and surfactant are mixed in water solution, the specific structures
(aggregates) are formed, in which polymer film is formed around micelle. In this work, Xanthan gum (XG) –
Sodium lauryl ether sulfate (SELS) complex formation and its effect on percentage viscosity reduction
(%VR) was studied. It was found that SELS surfactant reduced the mechanical degradation of XG much
more efficiently than th
The current paper aims to identify potential factors associated with employees’ intentions to leave information and communication technology companies in Iraq. There is evident variability in the literature regarding these factors; hence, a factor analysis approach was employed to identify these factors within the surveyed environment. Due to the difficulty in precisely delineating the size of the research population, a purposive sampling method was employed to reach an appropriate number of respondents within the aforementioned companies. A total of 288 employees responded to the survey conducted via Google Forms. The test results revealed the presence of five primary factors associated with employees’ intentions to leave, name
... Show More