The aim of study To purify GPCR from a local strain of S. cerevisiae using Ion exchange and gel filtration chromatography techniques , by packing materials for columns which will be chosen of low cost comparing to the already used in published researches, which depend on the costly affinity chromatography and other expensive methods of purification. Local strain of S. cerevisiae chosen for extraction and purification of G-protein coupled receptor (GPCR) .The strains were obtained from biology department in Al- Mosul University, Iraq. The isolated colony was activated on Yeast Extract Pepton Dextrose Broth (YEPDB) and incubated at 30 C˚ for 24 h .Loop fully of the yeast culture was transferred to (10ml) of yeast extract peptone glucose agar (YEPGA) slant , then incubated at 30C˚for 24h , after that it was stored at 4C˚ ,the yeast cultures were reactivated and persevered after each two weeks period. S.cerevisiae was identified by morphological, microscopic characterization and biochemical test . The GPCR that extract from whole cell of S.cerevisiae was purified by ion exchange chromatography using DEAE-Sepharose ,the bound proteins (negatively charged) were then eluted using gradient concentration of NaCl ranged between( 0.1 -0.5M). Gel filtration chromatography using Sepharose 6B was applied as a second step of purification. The optical density for each fraction was measured at 280 nm by UV-VS spectrophotometer then the GPCR concentration was determined by using ELISA Kit . The fractions which gave the highest absorbance and concentration of GPCR were collected .The molecular weight of GPCR was determined by gel filtration chromatography using blue dextrin solution. Standard curve was plotted between log of molecular weight for standard protein and the ratio of Ve/Vo of GPCR . The purity of the GPCR that extracted and purified from whole cell of S, cerevisiae were carried out by using SDS-PAGE electrophoresis . In ion exchange chromatography the fraction were collected with 5 ml tube at a flow rate 0.5 ml/ min and eluted with gradient (0.1-0.5M) of sodium chloride solution. Two proteins peaks appeared after eluted by the gradient concentration of sodium chloride, while no protein peaks appeared in the washing fractions. The GPCR concentration was measured in the fractions of these two protein peaks, data indicated that GPCR located in the first protein peak (eluted at 0.1M of NaCl) at fraction numbers between 3 and 9, the maximum concentration of GPCR was 9.281 with specific activity 71.58(ng/mg)protein , 3.125 purification folds and72.9(%) yield while the second peaks (eluted at 0.4 M of NaCl) don't give any concentration for GPCR, thus its neglected. Gel filtration chromatography was used as second step of purification which applied by using sepharose 6B. Results show single active protein peaks appeared that identical with the peak of GPCR at fractions numbers(29-35). The maximum concentration of GPCR was 9.082 (ng/ml)was observed in these fractions. The specific activity for these fractions was 151.37 (ng/mg) protein with 6.608 purification folds and 39.64 (%) yield. The present study a chive a relatively high purification of GPCR from whole cell of a local strain S. cerevisiae with fold purification 6.608 and a yield of 39.64 % and molecular weight about~33KD.
In this study lattice parameters, band structure, and optical characteristics of pure and V-doped ZnO are examined by employing (USP) and (GGA) with the assistance of First-principles calculation (FPC) derived from (DFT). The measurements are performed in the supercell geometry that were optimized. GGA+U, the geometrical structures of all models, are utilized to compute the amount of energy after optimizing all parameters in the models. The volume of the doped system grows as the content of the dopant V is increased. Pure and V-doped ZnO are investigated for band structure and energy bandgaps using the Monkhorst–Pack scheme's k-point sampling techniques in the Brillouin zone (G-A-H-K-G-M-L-H). In the presence of high V content, the ban
... Show MoreThis new azo dye 3-((2-(1H-indol-3-yl) ethyl) diazenyl) quinoline-2-ol was subsequently used to prepare a series of complexes with the metal ions of Cr+3, Cu+2, VO+2, Mn+2and Mo+6. The compounds identified by 1H and 13C-NMR, FT-IR, UV-Vis, mass spectroscopy, as well as TGA, DSC, and C.H.N., conductivity, magnetic susceptibility, metal and chlorine content. The results showed that the ligand behaves in a bidantate, and that the complexes gave octahedral, excepting for VO+2 square pyramid was given, that all complexes are non-electrolytes. The effectiveness of mention the compounds in inhibiting free radicals was evaluated by the ability to act as an antioxidant was measured using DPPH as a free radical and gallic acid as a standard s
... Show MoreA theoretical and protection study was conducted of the corrosion behavior of carbon steel surface with different concentrations of the derivative (Quinolin-2-one), namly (1-Amino-4,7-dimethyl-6-nitro-1H-quinolin-2-one (ADNQ2O)). Theoretically, Density Functional Theory (DFT) of B3LYP/ 6-311++G (2d, 2p) level was used to calculate the optimized geometry, physical properties and chemical inhibition parameters, with the local reactivity to predict both the reactive centers and to locate the possible sites of nucleophilic and electrophilic attacks, in vacuum, and in two solvents (DMSO and H2O), all at the equilibrium geometry. Experimentally, the inhibition efficiencies (%IE) in the saline solution (of 3.5%) NaCl were studied using potentiomet
... Show MoreThe adsorption of copper ions onto produced activated carbon from banana peels (with particle size 250 µm) in a single component system with applying magnetic field has been studied using fixed bed adsorber. The fixed bed breakthrough curves for the copper ions were investigated. The adsorption capacity for Cu (II) was investigated. It was found that 1) the exposure distance (E.D) and strength of magnetic field (B), affected the degree of adsorption; and 2) experiments showed that removal of Cu ions and accumulative adsorption capacity of adsorbent increase as the exposure distance and strength of magnetic field increase.
Green synthesis of silver nanoparticles (AgNPs) using different plant parts has shown a great potential in medicinal and industrial applications. In this study, AgNPs were in vitro green synthesized using A. graecorum, and its antifungal and antitumoractivities were investigated. Scanning electron microscopy (SEM) image result indicated spherical shape of AgNPs with a size range of 22-36 nm indicated by using Image J program. The functional groups indicated by Fourier-transform infrared spectroscopy (FTIR) represented the groups involved in the reduction of silver ion into nanoparticles. Alhagi graecorum AgNPs inhibited MCF-7 breast cancer cell line growth in increased concentration depend manner, significant differences shown at
... Show MoreSynthesis of 2-(4-Acetyl-phenyl)-4-nitro-isoindole-1, 3-dione chalcones were performed by fusion of 3-nitro phthalic anhydride with p-aminoacetophenone. Then the later was grinded with different aromatic aldehydes in the presence of sodium hydroxide to produce new chalcones derivatives A3-10 without using any solvent formation of new N- arylphthailimide chalcones were confirmed by FT-IR,1HNMR, 13CNMR spectroscopy and all final compounds were tested for their antifungal and antibacterial activity some of them showed more biological activity than the standard drugs
The current study included details of the anatomical characteristics of vegetative parts including the root, stem, leaf in cultivated Iraq for the species Brassciaaleraceacabbage, where the study dealt with the stomatal index and the rate of both the length and width of the stomatal complex and the thickness of the periderm, the tissue, cortex, vascular cylinder and pith. The parts were taken and measured after the plant was treated with brassinolide and the treated species with brassinolide and non-treated were measured and the study showed that there was a clear variation in the properties above.