The main objective of this study is to introduce a systematic design procedure for short-span segmental beams following a sophisticated ACI 440.2R-17 design procedure. The general aspects of innovative short-span segmental beams are easy to fabricate, economical and rapidly placed in pre-specified positions. Short-span segmental beams fabricated from individual precast plain-concrete blocks and CFRP plates. Recently, experimental tests performed on short-span segmental beams, by the authors, investigated CFRP plate-bonding, CFRP plate cross-sectional area, the thickness of plate-bonding epoxy resin, surface-to-surface condition of concrete blocks, as well as, interface condition of the bonding surface. The experimental program comprises testing of eight short-span segmental beams with an overall length, width and depth of (900, 200 and 80) mm, respectively, divided into four groups and subjected to 4-point bending test. The investigated test specimens exhibited considerable flexural strength under loading. Systematic designing of short-span segmental beams (SSSB) is presented in the current research. The advanced design method of SSSB with 1-layer of CFRP plates revealed an overestimation in ultimate strength by (73 and 15) % from the tested SSSB consisted of 1-layer CFRP/cementitious adhesive and SSSB has 1-layer CFRP/epoxy adhesive; respectively. Whereas the design method of SSSB with 2-layer of CFRP plates resulted in overestimation in strength by (71 and 45) % from the physical models of SSSB consisted of 2-layer CFRP/cementitious adhesive and SSSB has 2-layer CFRP /epoxy adhesive; respectively.
Many researchers have tackled the shear behavior of Reinforced Concrete (RC) beams by using different kinds of strengthening in the shear regions and steel fibers. In the current paper, the effect of multiple parameters, such as using one percentage of Steel Fibers (SF) with and without stirrups, without stirrups and steel fibers, on the shear behavior of RC beams, has been studied and compared by using Finite Element analysis (FE). Three-dimensional (3D) models of (RC) beams are developed and analyzed using ABAQUS commercial software. The models were validated by comparing their results with the experimental test. The total number of beams that were modeled for validation purposes was four. Extensive pa
... Show MoreLacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreLacing reinforcement plays a critical role in the design and performance of reinforced concrete (RC) slabs by distributing the applied loads more evenly across the slab, ensuring that no specific area of the slab is overloaded. In this study, nine slabs, divided into three groups according to the investigated parameters, were meticulously designed and evaluated to study the interplay between the lacing reinforcement and other key parameters. Each slab was crafted for simple support and was subjected to both static and repeated two-point load tests. The lacing reinforcement had an angle of 45° with various tension and lacing steel. The repeated-tested specimens with lacing reinforcement experienced smaller ductility than those of s
... Show MoreStatic loads exposing to mechanical components can cause cracks, which are lead to form stress concentration regions causing the failure of structure. Generally, from 80% to 90% of structure failure is due to initiation of the cracks. Therefore, it is necessary to repair the crack and reduce its effect on the structure where the effect of the crack is modelled as an additional flexibility to the structure. In the last few years, piezoelectric materials have been considered as one of the most favourable repairing techniques. The piezoelectric material converts the applied voltage on it to a bending moment to counter the bending moment caused by the external load on the beam at the crack location. In this study, the design of the piez
... Show MoreIn this study, simply supported reinforced concrete (RC) beams were analyzed using the Extended Finite Element Method (XFEM). This is a powerful method that is used for the treatment of discontinuities resulting from the fracture process and crack propagation in concrete. The mesoscale is used in modeling concrete as a two-phasic material of coarse aggregate and cement mortar. Air voids in the cement paste will also be modeled. The coarse aggregate used in the casting of these beams is a rounded aggregate consisting of different maximum sizes. The maximum size is 25 mm in the first model, and in the second model, the maximum size is 20 mm. The compressive strength used in these beams is equal to 26 MPa.
The subje
... Show MoreThis paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the dee
... Show MoreThis paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the dee
... Show MoreIn the present investigation two different types of fiber reinforced polymer composites were prepared by hand lay-up method using three different parameters (curing temperature, pressing load and fiber volume fraction). These composites were prepared from the polyester resin as the matrix material reinforced with glass fibers as first group of samples and mat Kevlar fibers as the second group, both with different volume fractions (4%, 8%, and 12%) of fibers. They were then tested by tensile strength and impact strength. The main objective in this study is to use Taguchi method for predicting the better parameters that give the better tensile and impact strength to the composites, and then preparing composites at
... Show More