Preferred Language
Articles
/
HBfQsJIBVTCNdQwC5b4Y
Diabetes Prediction Using Machine Learning
...Show More Authors

Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five attributes of the training process. The results of the second experiment showed improvement in the performance of the KNN and the Multilayer Perceptron. The results of the second experiment showed a slight decrease in the performance of the Random Forest with 97.5 % accuracy.

Scopus Crossref
View Publication
Publication Date
Thu Jun 23 2022
Journal Name
American Scientific Research Journal For Engineering, Technology, And Sciences
A Review of TCP Congestion Control Using Artificial Intelligence in 4G and 5G Networks
...Show More Authors

In recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne

... Show More
View Publication
Publication Date
Tue Aug 31 2021
Journal Name
Inmateh Agricultural Engineering
DETERMINING THE EFFICIENCY OF A SMART SPRAYING ROBOT FOR CROP PROTECTION USING IMAGE PROCESSING TECHNOLOGY
...Show More Authors

A system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.

View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Al-nahrain Journal Of Science
Image Classification Using Bag of Visual Words (BoVW)
...Show More Authors

In this paper two main stages for image classification has been presented. Training stage consists of collecting images of interest, and apply BOVW on these images (features extraction and description using SIFT, and vocabulary generation), while testing stage classifies a new unlabeled image using nearest neighbor classification method for features descriptor. Supervised bag of visual words gives good result that are present clearly in the experimental part where unlabeled images are classified although small number of images are used in the training process.

View Publication Preview PDF
Crossref (23)
Crossref
Publication Date
Sat Oct 01 2022
Journal Name
Baghdad Science Journal
COVID-19 Diagnosis System using SimpNet Deep Model
...Show More Authors

After the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings

... Show More
View Publication Preview PDF
Scopus (7)
Scopus Clarivate Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Satellite image classification using proposed singular value decomposition method
...Show More Authors

In this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon May 21 2007
Journal Name
Journal Of Planner And Development
Using the Input - Output Model in building the economic plan using the computer
...Show More Authors

The origin of this technique lies in the analysis of François Kenai (1694-1774), the leader of the School of Naturalists, presented in Tableau Economique. This method was developed by Karl Marx in his analysis of the Departmental Relationships and the nature of these relations in the models of " "He said. The current picture of this type of economic analysis is credited to the Russian economist Vasily Leontif. This analytical model is commonly used in developing economic plans in developing countries (p. 1, p. 86). There are several types of input and output models, such as static model, mobile model, regional models, and so on. However, this research will be confined to the open-ended model, which found areas in practical application.

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Euro Dinar Trading Analysis Using WARIMA Hybrid Model
...Show More Authors

The rise in the general level of prices in Iraq makes the local commodity less able to compete with other commodities, which leads to an increase in the amount of imports and a decrease in the amount of exports, since it raises demand for foreign currencies while decreasing demand for the local currency, which leads to a decrease in the exchange rate of the local currency in exchange for an increase in the exchange rate of currencies. This is one of the most important factors affecting the determination of the exchange rate and its fluctuations. This research deals with the currency of the European Euro and its impact against the Iraqi dinar. To make an accurate prediction for any process, modern methods can be used through which

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 28 2022
Journal Name
Journal Of The College Of Education For Women
The Male/Female Students’ Attitudes in the University College to Applied Sciences in Gaza Towards Learning Arabic Grammar Remotely in the Course of Arabic Language Requirement During Corona Pandemic
...Show More Authors

This study deals with examining UCAS students’ attitudes in Gaza towards learning Arabic grammar online during the Corona pandemic. The researcher has adopted a descriptive approach and used a questionnaire as a tool for data collection. The results of the study have statistically shown significant differences at the level of "0.01" between the average scores of students in favor of the students of the humanities specializations. It has also been found that the students’ attitudes at the Department of Humanities and Media towards learning Arabic grammar online are positive. Additionally, the results revealed no statistical significant differences due to the variable of UCAS students’ scientific qualifications. The results stressed

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Image Encryption Techniques Using Dynamic Approach : An Article Review
...Show More Authors

In this study, a chaotic method is proposed that generates S-boxes similar to AES S-boxes with the help of a private key belonging to

In this study, dynamic encryption techniques are explored as an image cipher method to generate S-boxes similar to AES S-boxes with the help of a private key belonging to the user and enable images to be encrypted or decrypted using S-boxes. This study consists of two stages: the dynamic generation of the S-box method and the encryption-decryption method. S-boxes should have a non-linear structure, and for this reason, K/DSA (Knutt Durstenfeld Shuffle Algorithm), which is one of the pseudo-random techniques, is used to generate S-boxes dynamically. The biggest advantage of this approach is the produ

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF