Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five attributes of the training process. The results of the second experiment showed improvement in the performance of the KNN and the Multilayer Perceptron. The results of the second experiment showed a slight decrease in the performance of the Random Forest with 97.5 % accuracy.
Many people believe that diabetes appears after a psychological crisis, which is a misconception but it could be in them before having a crisis ore the crisis. But emotion increases the appearance of symptoms, and athletes are at risk of developing diabetes. Hypoglycemia is not unusual for athletes, and during physical activity the sugar level changes in the blood. Therefore, it is important to conduct tests for the measurement of sugar before and immediately after the activity, for the purpose of detecting the sharp drop in the sugar level and treating it, and the early detection is necessary to avoid the possibility of diabetes, the concept of psychological immunity in psychology is considered a positive concepts that maintain the balance
... Show MoreBackground: Chronic hyperglycemia causes diabetic nephropathy(DN), which is a typical microvascular complication of type 2 diabetes mellitus. The pathogenesis of DN is not fully understanding. The inflammation may possess a significant role in the progression of DN in diabetic patients. Method: The study accomplished at teaching laboratories of medical city, Baghdad, Iraq. It was included 50uncontrolled diabetic type 2 patients with nephropathy, age range (40-78) years and 42 controlled diabetics type 2 without nephropathy, age range (35 - 52) years as a control group. The participants divided in to two groups according to HbA1c measurement which is described as follows: < 7.5% of HbA1c describes controlled diabetes, and > 9% of HbA1c
... Show MoreThis paper describes a practical study on the impact of learning's partners, Bluetooth Broadcasting system, interactive board, Real – time response system, notepad, free internet access, computer based examination, and interaction classroom, etc, had on undergraduate student performance, achievement and involving with lectures. The goal of this study is to test the hypothesis that the use of such learning techniques, tools, and strategies to improve student learning especially among the poorest performing students. Also, it gives some kind of practical comparison between the traditional way and interactive way of learning in terms of lectures time, number of tests, types of tests, student's scores, and student's involving with lectures
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreBACKGROUND: Preterm labour is a major cause of perinatal morbidity and mortality, so it is important to predict preterm delivery using the clinical examination of the cervix and uterine contraction frequency. New markers for the prediction of preterm birth have been developed such as transvaginal ultrasound measurement of cervical length as this method is widely available. OBJECTIVE: To determine, whether transvaginal cervical length measurement predicts imminent preterm delivery better than digital cervical length measurement in women presented with preterm labour and intact membranes. PATIENTS AND METHODS: Two hundred women presented with preterm labour between 24 and 36+6 weeks of gestation were included in this study. All women subjecte
... Show MoreThe permeability is the most important parameter that indicates how efficient the reservoir fluids flow through the rock pores to the wellbore. Well-log evaluation and core measurements techniques are typically used to estimate it. In this paper, the permeability has been predicted by using classical and Flow zone indicator methods. A comparison between the two methods shows the superiority of the FZI method correlations, these correlations can be used to estimate permeability in un-cored wells with a good approximation.
Deep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreResearch Summary The aim of the search for knowledge of the effect generative learning strategy in: 1 - Achievement of the second grade. 2 - Systemic thinking for the second grade students when studying the biology. The study sample increased (60) students distributed into two equal experimental and control groups. Prepare the test of 40 pieces of multiple choice type and prepare a test for systematic thinking according to three skills 1. Understand the relationships between the parts of the systemic form and complement the sentences given 2 - complement the relationships between parts of the systemic form 3. Building the systemic form. It was a search result 1- There is a difference of statistical significance (at level 0.05) between th
... Show MoreThe research aims to identify how to enhance the quality of the human resources, focusing on four dimensions (efficiency, effectiveness, flexibility, and reliability), by adopting an adventure learning method that combines theoretical and applied aspects at the same time, when developing human resources and is applied using information technology, and that Through its dimensions, which are (cooperation, interaction, communication, and understanding), as the research problem indicated a clear deficiency in the cognitive perception of the mechanism of employing adventure learning dimensions in enhancing human resources quality, so the importance of research was to present treatments and proposals to reduce this problem. To achieve
... Show More