Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five attributes of the training process. The results of the second experiment showed improvement in the performance of the KNN and the Multilayer Perceptron. The results of the second experiment showed a slight decrease in the performance of the Random Forest with 97.5 % accuracy.
Translation as a human endeavor has occupied the attention of nations since it bridges the gab between cultures and helps in bringing out national integration. The translation of Kurdish literature started with personal efforts in which newspapers and magazines had played a vital role in supporting translation and paved the way for promoting the publication of Kurdish products.
The bulk of the materials translated from Arabic exceeds that translated from other languages owing to the influence of religious and authoritarian factors.
The survey of the Kurdish journals was limited to the period 1898-1991 since it marked a radical and historic change represented by the birth of Kurdish journalis
... Show More