Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five attributes of the training process. The results of the second experiment showed improvement in the performance of the KNN and the Multilayer Perceptron. The results of the second experiment showed a slight decrease in the performance of the Random Forest with 97.5 % accuracy.
This paper represent the second step i n a molecular clon i ng program ai ming to clone large DNA fi·agmen ts of the sal t tolerant bermudagrass (Cyrwdon dactylon L.) DNA usi ng the bacteriophage (EM13L3) as a vector.
In th is work, a yield of about I 00 g bacteriophage DNA per one liter culture.was obtained with.a purity ranging between (1.7-1.8). The vector JJNA v.as completely double digested with the restriction enzymes llamHI and EcoRI, followed by pu
... Show MoreNowadays, university education stands in front of both students who feel they are weak and teachers who are addicted to using traditional and dependent teaching. This has led to have negative repercussions on the learner from different aspects, including the mental aspect and the academic achievement process. Therefore, the present research is concerned with finding a new teaching method that adopts the motivation by the fear of failure technique. Thus, the study aims to examine the effect of adopting this method on students’ academic achievement. To achieve this aim, an experimental method was used, and an achievement test was built for the curriculum material of level two students. The pretest test was applied on 17 male and female s
... Show MoreTwo simple methods for the determination of eugenol were developed. The first depends on the oxidative coupling of eugenol with p-amino-N,N-dimethylaniline (PADA) in the presence of K3[Fe(CN)6]. A linear regression calibration plot for eugenol was constructed at 600 nm, within a concentration range of 0.25-2.50 μg.mL–1 and a correlation coefficient (r) value of 0.9988. The limits of detection (LOD) and quantitation (LOQ) were 0.086 and 0.284 μg.mL–1, respectively. The second method is based on the dispersive liquid-liquid microextraction of the derivatized oxidative coupling product of eugenol with PADA. Under the optimized extraction procedure, the extracted colored product was determined spectrophotometrically at 618 nm. A l
... Show MoreThis work aims to see the positive association rules and negative association rules in the Apriori algorithm by using cosine correlation analysis. The default and the modified Association Rule Mining algorithm are implemented against the mushroom database to find out the difference of the results. The experimental results showed that the modified Association Rule Mining algorithm could generate negative association rules. The addition of cosine correlation analysis returns a smaller amount of association rules than the amounts of the default Association Rule Mining algorithm. From the top ten association rules, it can be seen that there are different rules between the default and the modified Apriori algorithm. The difference of the obta
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
The research aims to identify the extent to which Iraqi private banks practice profit management motivated by reducing the taxable base by increasing the provision for loan losses by relying on the LLP it model, which consists of a main independent variable (net profit before tax) and independent sub-variables (bank size, total debts to total equity, loans granted to total obligations) under the name of the variables governing the banking business. (Colmgrove-Smirnov) was used to test the normal distribution of data for all banks during the period 2017-2020, and then find the correlation between the main independent variable sub and the dependent variable by means of the correlation coefficient person, and then using the multiple
... Show MoreThis research work aims to the determination of molybdenum (VI) ion via the formation of peroxy molybdenum compounds which has red-brown colour with absorbance wave length at 455nm for the system of ammonia solution-hydrogen peroxide-molybdenum (VI) using a completely newly developed microphotometer based on the ON-Line measurement. Variation of responses expressed in millivolt. A correlation coefficient of 0.9925 for the range of 2.5-150 ?g.ml-1 with percentage linearity of 98.50%. A detection limit of 0.25 ?g.ml-1 was obtained. All physical and chemical variable were optimized interferences of cation and anion were studied classical method of measurement were done and compared well with newly on-line measurements. Application for the use
... Show MoreThe ascorbic acid content of juices of some fruits and pharmaceutical tablets of Vitamin C was determined by a homemade apparatus of DIE technique using a thermocouple as heat sensor. The method is simple, speed, low cost and the different types of turbid, colored samples can be analyzed without any problem. The results were of a valuable accuracy and precision, and the recovery of results was with acceptable values
Administrative procedures in various organizations produce numerous crucial records and data. These
records and data are also used in other processes like customer relationship management and accounting
operations.It is incredibly challenging to use and extract valuable and meaningful information from these data
and records because they are frequently enormous and continuously growing in size and complexity.Data
mining is the act of sorting through large data sets to find patterns and relationships that might aid in the data
analysis process of resolving business issues. Using data mining techniques, enterprises can forecast future
trends and make better business decisions.The Apriori algorithm has bee