Diabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five attributes of the training process. The results of the second experiment showed improvement in the performance of the KNN and the Multilayer Perceptron. The results of the second experiment showed a slight decrease in the performance of the Random Forest with 97.5 % accuracy.
Offline handwritten signature is a type of behavioral biometric-based on an image. Its problem is the accuracy of the verification because once an individual signs, he/she seldom signs the same signature. This is referred to as intra-user variability. This research aims to improve the recognition accuracy of the offline signature. The proposed method is presented by using both signature length normalization and histogram orientation gradient (HOG) for the reason of accuracy improving. In terms of verification, a deep-learning technique using a convolution neural network (CNN) is exploited for building the reference model for a future prediction. Experiments are conducted by utilizing 4,000 genuine as well as 2,000 skilled forged signatu
... Show MoreData Driven Requirement Engineering (DDRE) represents a vision for a shift from the static traditional methods of doing requirements engineering to dynamic data-driven user-centered methods. Data available and the increasingly complex requirements of system software whose functions can adapt to changing needs to gain the trust of its users, an approach is needed in a continuous software engineering process. This need drives the emergence of new challenges in the discipline of requirements engineering to meet the required changes. The problem in this study was the method in data discrepancies which resulted in the needs elicitation process being hampered and in the end software development found discrepancies and could not meet the need
... Show MoreВ статье рассматриваются понятие наглядности и ее классификация, эффективное применение принципа наглядности, возможность и преимущество использования наглядности и современные инструменты ее реализации в ираке.
Вследствие глобальных изменений во всем мире изменилась и роль иностранного языка в системе образования. Современный человек, шагающий в ногу со временем, не мыслит себя без зна
... Show MoreThis study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise J
... Show MoreWith its rapid spread, the coronavirus infection shocked the world and had a huge effect on billions of peoples' lives. The problem is to find a safe method to diagnose the infections with fewer casualties. It has been shown that X-Ray images are an important method for the identification, quantification, and monitoring of diseases. Deep learning algorithms can be utilized to help analyze potentially huge numbers of X-Ray examinations. This research conducted a retrospective multi-test analysis system to detect suspicious COVID-19 performance, and use of chest X-Ray features to assess the progress of the illness in each patient, resulting in a "corona score." where the results were satisfactory compared to the benchmarked techniques. T
... Show MorePurpose: The research aims to determine the relationship between E-Learning and Total Quality Management (TQM) in Educational institutions in Nineveh Governorates.
Methodology / Design: The researchers distributed (30) questionnaires to employees (teachers and administrators) of Nineveh Governorate education who represent the community of the research sample, as they were analyzed using the SPSS V.20
The importance of research: The importance of the research in the fact that it focuses on one of the educational methods represented in integrating the traditional method and relying on modern technologies using computers and the Internet in the field of education to improve the reali
... Show MoreIn this paper, we build a fuzzy classification system for classifying the nutritional status of children under 5 years old in Iraq using the Mamdani method based on input variables such as weight and height to determine the nutritional status of the child. Also, Classifying the nutritional status faces a difficult challenge in the medical field due to uncertainty and ambiguity in the variables and attributes that determine the categories of nutritional status for children, which are relied upon in medical diagnosis to determine the types of malnutrition problems and identify the categories or groups suffering from malnutrition to determine the risks faced by each group or category of children. Malnutrition in children is one of the most
... Show MoreLowpass spatial filters are adopted to match the noise statistics of the degradation seeking
good quality smoothed images. This study imply different size and shape of smoothing
windows. The study shows that using a window square frame shape gives good quality
smoothing and at the same time preserving a certain level of high frequency components in
comparsion with standard smoothing filters.
Abstract— The growing use of digital technologies across various sectors and daily activities has made handwriting recognition a popular research topic. Despite the continued relevance of handwriting, people still require the conversion of handwritten copies into digital versions that can be stored and shared digitally. Handwriting recognition involves the computer's strength to identify and understand legible handwriting input data from various sources, including document, photo-graphs and others. Handwriting recognition pose a complexity challenge due to the diversity in handwriting styles among different individuals especially in real time applications. In this paper, an automatic system was designed to handwriting recognition
... Show More