Preferred Language
Articles
/
HBZJu4sBVTCNdQwCsNm4
INTRUSION WINDOWS XP BY BACKDOOR TOOL
...Show More Authors

View Publication
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2022
Journal Name
Journal Of Engineering
Performance Analysis of different Machine Learning Models for Intrusion Detection Systems
...Show More Authors

In recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sat May 24 2025
Journal Name
Iraqi Journal For Computer Science And Mathematics
Intrusion Detection System for IoT Based on Modified Random Forest Algorithm
...Show More Authors

An intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Dec 01 2011
Journal Name
Aes-atema International Conference Series - Advances And Trends In Engineering Materials And Their Applications
Effect of new tool geometry on weld strength of AA2024 aluminum alloy plates welded by friction stir spot welding process
...Show More Authors

A new tool geometry was used to achieve friction stir spot welding (FSSW) in which the shoulder was designed separately from the rotating pin, and in order to examine weldment strength through the modified tool, a lap joints of AA2024 aluminum alloy plate 1 mm thick were welded successfully by using 6 mm pin diameter and varying process parameters (rotational speeds, tool nose geometry, and depth of tool penetration in the lower welded plate). Experimental tests indicate that the maximum average tensile shear load was 3100 N at the best selected condition. Microstructure examination and micro hardness test along the spot zones were investigated as well as measuring pin penetration load. Visual inspection of the welded spot surface shows a g

... Show More
Scopus
Publication Date
Sun Dec 06 2009
Journal Name
Baghdad Science Journal
Study of the Porosity of Certain pharmaceutical Tablets using Mercury Intrusion Porosimeter
...Show More Authors

Porosity and pore structure are important characteristics of pharmaceutical tablets, since they influence the physical properties, such as mechanical strength, density and disintegration time. This paper is an attempt to investigate the pore structure of four different paracetamol tablets based on mercury porosimetry. The intrusion volumes of mercury were used to calculate the pore diameter, pore volume and pore size distribution. The result obtained indicate that the variation of the pore volume in the tablets followed the sequence:- S.D.I. Iraq? Pharmacare,Dubai-U.A.E.? Bron and Burk(UK) London?Lark Laboratories(India), while the variation of surface area followed the sequence:- S.D.I. Iraq? Lark Laboratories(India)? Pharmacare,Dubai-U.A

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Dec 31 2022
Journal Name
Al-kindy College Medical Journal
Lifestyle Medicine: A Promising tool to Restoring Health
...Show More Authors

Lifestyle Medicine is the application of evidence-based lifestyle approaches for the prevention, treatment, and even the reversal of lifestyle-related chronic diseases such as diabetes, hypertension, heart disease, obesity, polycystic ovarian diseases, dementia, arthritis, and cancers

View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
2017 12th International Conference For Internet Technology And Secured Transactions (icitst)
A novel multimedia-forensic analysis tool (M-FAT)
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jan 20 2022
Journal Name
Webology
Hybrid Intrusion Detection System based on DNA Encoding, Teiresias Algorithm and Clustering Method
...Show More Authors

Until recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15

... Show More
View Publication
Crossref (3)
Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers
...Show More Authors

Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of select

... Show More
View Publication Preview PDF
Scopus (29)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Fri Nov 01 2019
Journal Name
2019 1st International Informatics And Software Engineering Conference (ubmyk)
Radial Basis Function (RBF) Based on Multistage Autoencoders for Intrusion Detection system (IDS)
...Show More Authors

In this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref