There has been an increase in demand for nanocomposite, which has resulted in large-scale manufacturers employing high-energy processes and harmful solvents. Because of this, the need for environmentally benign "green" synthesis processes has grown. Other methods for making nanocomposite include using plants and plant products, bacteria, fungi, yeast, and algae. Green synthesis has minimal toxicity and is safe for human health and the environment compared to other processes, making it the ideal option for creating nanocomposite materials. This work reveals an environmentally friendly synthesis method for magnetic nanocomposites. In particular, they were using an aqueous extract of Artemisia to obtain ZnO/Fe3O4
... Show MoreIn this study, the optimum conditions for COD removal from petroleum refinery wastewater by using a combined electrocoagulation- electro-oxidation system were attained by Taguchi method. An orthogonal array experimental design (L18) which is of four controllable parameters including NaCl concentration, C.D. (current density), PH, and time (time of electrolysis) was employed. Chemical oxygen demand (COD) removal percentage was considered as the quality characteristics to be enhanced. Also, the value of turbidity and TDS (total dissolved solid) were estimated. The optimum levels of the studied parameters were determined precisely by implementing S/N analysis and analysis of variance (ANOVA). The optimum conditions were found to be NaCl = 2.5
... Show MoreThe main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and
A reversed-phase HPLC method with fluorescence detection for the determination of the aflatoxins B1, B2, G1 and G2 in 42 animal feeds, comprising corn (16), soya bean meal (8), mixed meal (13), sunflower, wheat, canola, palm kernel, copra meals (1 each) was carried out. The samples were first extracted using acetonitrile:water (9:1), and was further cleaned-up using a multifunctional column. Optimum conditions for the extraction and chromatographic separation were investigated. By adopting an isocratic chromatographic system using a mobile phase comprising acetonitrile:methanol:water (8:27:65, v/v/v), the separation of the four aflatoxins was possible within 30 min. Recoveries for aflatoxins B1, B2, G1 and G2 were 98 ± 0.7%, 95 ± 1.0%, 94
... Show MoreFor the most reliable and reproducible results for calibration or general testing purposes of two immiscible liquids, such as water in engine oil, good emulsification is vital. This study explores the impact of emulsion quality on the Fourier transform infrared (FT-IR) spectroscopy calibration standards for measuring water contamination in used or in-service engine oil, in an attempt to strengthen the specific guidelines of ASTM International standards for sample preparation. By using different emulsification techniques and readily available laboratory equipment, this work is an attempt to establish the ideal sample preparation technique for reliability, repeatability, and reproducibility for FT-IR analysis while still considering t
... Show MoreDeep learning techniques allow us to achieve image segmentation with excellent accuracy and speed. However, challenges in several image classification areas, including medical imaging and materials science, are usually complicated as these complex models may have difficulty learning significant image features that would allow extension to newer datasets. In this study, an enhancing technique for object detection is proposed based on deep conventional neural networks by combining levelset and standard shape mask. First, a standard shape mask is created through the "probability" shape using the global transformation technique, then the image, the mask, and the probability map are used as the levelset input to apply the image segme
... Show More