Preferred Language
Articles
/
H0L_6JoBMeyNPGM3mtYF
Heterogeneous Traffic Management in SDN-Enabled Data Center Network Using Machine Learning-SPIKE Model
...Show More Authors

Software-Defined Networking (SDN) has evolved network management by detaching the control plane from the data forwarding plane, resulting in unparalleled flexibility and efficiency in network administration. However, the heterogeneity of traffic in SDN presents issues in achieving Quality of Service (QoS) demands and efficiently managing network resources. SDN traffic flows are often divided into elephant flows (EFs) and mice flows (MFs). EFs, which are distinguished by their huge packet sizes and long durations, account for a small amount of total traffic but require disproportionate network resources, thus causing congestion and delays for smaller MFs. MFs, on the other hand, have a short lifetime and are latency-sensitive, but they account for the vast bulk of traffic in data center networks. The incorrect use of network resources by EFs frequently disturbs the performance of MFs. To meet these issues, precise classification of network traffic has become crucial. This classification enables traffic-aware routing techniques. This paper offers a novel model for classifying SDN traffic into MF and EF using a spike neural network. Once identified, traffic is routed based on the classification results. For MF, the model uses the Dijkstra algorithm. For EF, the Widest Dijkstra algorithm is used. This model solves the difficulties of traffic heterogeneity in SDNs by integrating advanced classification techniques and strategic routing algorithms. It enables desirable resource allocation, eliminates congestion, and increases network performance and dependability. The models used have proven their efficiency by outperforming the traditional Software Defined Network and other algorithms in terms of: throughput by 60%, and 20%, bandwidth utilization by 5%, and 7%, packet loss by 50%, and latency by 60%, respectively.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Oct 30 2023
Journal Name
Aro-the Scientific Journal Of Koya University
Enhancing Upper Limb Prosthetic Control in Amputees Using Non-invasive EEG and EMG Signals with Machine Learning Techniques
...Show More Authors

Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Oct 07 2019
Journal Name
Journal Of Global Pharma Technology
Contribution of Equilibrium Variables with the High Spike Accuracy of the Position Diagonal Center (4) in the National Volleyball Team Players
...Show More Authors

What is important about this study is whether there is a relationship between the ability to balance and beating overwhelming for the Iraqi national team volleyball? The study aims to identify the percentage of the equilibrium contribution and its variables with the accuracy of the skill of beating the high spike Diagonal center (4) in the players. In the national volleyball team season (2016-2017), the researchers used the descriptive approach in the style of associative relationships to suit the problem of research. The research community included all the players specialized in the high beating of the Iraqi national team applicants in the ball The researchers concluded that the equilibrium variables contributed accurately and quickly to t

... Show More
View Publication
Publication Date
Thu Jan 01 2009
Journal Name
Journal Of Global Pharma Technology
Contribution of Equilibrium Variables with the High Spike Accuracy of the Position Diagonal Center (4) in the National Volleyball Team Players
...Show More Authors

Publication Date
Mon Jun 30 2025
Journal Name
Ingénierie Des Systèmes D Information
Comparative Analysis of Four Programming Languages for Machine Learning
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Mon Apr 07 2025
Journal Name
Al-nahrain Journal For Engineering Sciences
Navigating the Challenges and Opportunities of Tiny Deep Learning and Tiny Machine Learning in Lung Cancer Identification
...Show More Authors

Lung cancer is the most common dangerous disease that, if treated late, can lead to death. It is more likely to be treated if successfully discovered at an early stage before it worsens. Distinguishing the size, shape, and location of lymphatic nodes can identify the spread of the disease around these nodes. Thus, identifying lung cancer at the early stage is remarkably helpful for doctors. Lung cancer can be diagnosed successfully by expert doctors; however, their limited experience may lead to misdiagnosis and cause medical issues in patients. In the line of computer-assisted systems, many methods and strategies can be used to predict the cancer malignancy level that plays a significant role to provide precise abnormality detectio

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Face Recognition and Emotion Recognition from Facial Expression Using Deep Learning Neural Network
...Show More Authors
Abstract<p>Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.</p>
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Sat Jun 06 2020
Journal Name
Journal Of The College Of Education For Women
Image classification with Deep Convolutional Neural Network Using Tensorflow and Transfer of Learning
...Show More Authors

The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Advances In Science And Technology Research Journal
Power Predicting for Power Take-Off Shaft of a Disc Maize Silage Harvester Using Machine Learning
...Show More Authors

View Publication
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sat Jun 01 2019
Journal Name
2019 International Symposium On Networks, Computers And Communications (isncc)
An Interference Mitigation Scheme for Millimetre Wave Heterogeneous Cloud Radio Access Network with Dynamic RRH Clustering
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Tue Feb 01 2022
Journal Name
Methods And Objects Of Chemical Analysis
Spectrophotometric Analysis of Quaternary Drug Mixtures using Artificial Neural network model
...Show More Authors

Novel artificial neural network (ANN) model was constructed for calibration of a multivariate model for simultaneously quantitative analysis of the quaternary mixture composed of carbamazepine, carvedilol, diazepam, and furosemide. An eighty-four mixing formula where prepared and analyzed spectrophotometrically. Each analyte was formulated in six samples at different concentrations thus twentyfour samples for the four analytes were tested. A neural network of 10 hidden neurons was capable to fit data 100%. The suggested model can be applied for the quantitative chemical analysis for the proposed quaternary mixture.

Preview PDF