Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization of critical hyperparameters, such as layer count, neuron count per layer, learning rate, and batch size. Utilizing a diverse dataset comprising DNA sequences fromtwo distinct groups: patients diagnosed with breast cancer and a control group of healthy individuals. The model showcased remarkable performance, with accuracy, precision, recall, F1-score, and area under the curve metrics reaching 0.871, 0.872, 0.871, 0.872, and 0.95, respectively, outperforming previous models. These findings underscore the significant potential of DL techniques in amplifying the accuracy of disease diagnosis and prognosis through DNA sequencing, indicating substantial advancements in personalized medicine and genetic counseling. Collectively, the findings of this investigation suggest that DL presents transformative potential in the landscape of genetic disorder diagnosis and management.
Reverse Osmosis (RO) has already proved its worth as an efficient treatment method in chemical and environmental engineering applications. Various successful RO attempts for the rejection of organic and highly toxic pollutants from wastewater can be found in the literature over the last decade. Dimethylphenol is classified as a high-toxic organic compound found ubiquitously in wastewater. It poses a real threat to humans and the environment even at low concentration. In this paper, a model based framework was developed for the simulation and optimisation of RO process for the removal of dimethylphenol from wastewater. We incorporated our earlier developed and validated process model into the Species Conserving Genetic Algorithm (SCG
... Show MoreAbstract
The research aimed to test the relationship between the size of investment allocations in the agricultural sector in Iraq and their determinants using the Ordinary Least Squares (OLS) method compared to the Error Correction Model (ECM) approach. The time series data for the period from 1990 to 2021 was utilized. The analysis showed that the estimates obtained using the ECM were more accurate and significant than those obtained using the OLS method. Johansen's test indicated the presence of a long-term equilibrium relationship between the size of investment allocations and their determinants. The results of th
... Show MoreObjectives: The study aimed to evaluate health behavior, evaluate Health Action Process Approach, determine the effectiveness of the Health Action Process Approach based the application of program on students’ engaging in regular physical exercise.
Methodology: The research design for this study was a quasi-experimental. The study sample included high school male students, the final sample size was(160 ) Non-probability sampling (convenience sample) are chosen, (80) students study group and (80) students control group.
Results: The results show there was no statistically significant difference in the HAPA constructs among family's socioeconomic class groups and less tha
... Show MoreUnconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria. Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core. Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um
... Show MoreHepatocellular carcinoma (HCC) is the third most common cause of cancer-related death. Therefore, it is critical for researchers to understand molecular biology in greater depth. In several diseases including cancer, abnormal miRNA expression has been linked to apoptosis, proliferation, differentiation, and metastasis. Many miRNAs have been studied in relation to cancer, including miR-122, miR-223, and others. Hepatitis B and C viruses are the most important global risk factors for HCC. This study is intended to test whether serum miRNAs serve as a potential biomarker for both HCC and viral infections HBV and C. The expression of miRNA in 64 serum samples was analyzed by RT-qPCR. Compared to healthy volunteers, HCC patients' sera expre
... Show MoreThe present theoretical study analyzes the legacy of the Chicago School of Urban Sociology and evaluates it in the light of the growth and development of Chicago City and the establishment of sociology in it. Sociology has become an academic discipline recognized in the United States of America in the late nineteenth century, particularly, after the establishment of the first department of sociology in the University of Chicago in 1892. That was during the period of the rapid industrialization and sustainable growth of the Chicago City. The Chicago School relied on Chicago City in particular, as one of the American cities that grew and expanded rapidly in the first two decades of the twentieth century. At the end of the nineteenth centur
... Show More