Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization of critical hyperparameters, such as layer count, neuron count per layer, learning rate, and batch size. Utilizing a diverse dataset comprising DNA sequences fromtwo distinct groups: patients diagnosed with breast cancer and a control group of healthy individuals. The model showcased remarkable performance, with accuracy, precision, recall, F1-score, and area under the curve metrics reaching 0.871, 0.872, 0.871, 0.872, and 0.95, respectively, outperforming previous models. These findings underscore the significant potential of DL techniques in amplifying the accuracy of disease diagnosis and prognosis through DNA sequencing, indicating substantial advancements in personalized medicine and genetic counseling. Collectively, the findings of this investigation suggest that DL presents transformative potential in the landscape of genetic disorder diagnosis and management.
Quality control charts are limited to controlling one characteristic of a production process, and it needs a large amount of data to determine control limits to control the process. Another limitation of the traditional control chart is that it doesn’t deal with the vague data environment. The fuzzy control charts work with the uncertainty that exists in the data. Also, the fuzzy control charts investigate the random variations found between the samples. In modern industries, productivity is often of different designs and a small volume that depends on the market need for demand (short-run production) implemented in the same type of machines to the production units. In such cases, it is difficult to determine the contr
... Show MoreEmpirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreAttention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w
... Show MoreThe regular job of a reservoir engineer is to put a development plan to increase hydrocarbon production as possible and within economic and technical considerations. The development strategy for the giant reservoir is a complex and challenging task through the decision-making analysis process. Due to the limited surface water treatment facility, the reservoir management team focuses on minimizing water cut as low as possible by check the flow of formation and injected water movement through the Mishrif reservoir. In this research, a representative sector was used to make the review of water injection configuration, which is considered an efficient tool to make study in a particular area of the entire field when compared with the ful
... Show MoreBackground: The transcriptional control of various cell types, especially in the development or functioning of immune system cells involved in either promoting or inhibiting the immune response against cancer, is significantly influenced by DNA or RNA methylation. Multifaceted interconnections exist between immunological or cancer cell populations in the tumor's microenvironment (TME). TME alters the fluctuating DNA (as well as RNA) methylation sequences in these immunological cells to change their development into pro- or anti-cancer cell categories (such as T cells, which are regulatory, for instance). Objective: This review highlights the impact of DNA and RNA methylation on myeloid and lymphoid cells, unraveling their intricate
... Show MoreInformation about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites
... Show More
