Preferred Language
Articles
/
GxiUcpUBVTCNdQwC3y6W
Optimizing genetic prediction: Define-by-run DL approach in DNA sequencing
...Show More Authors

Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization of critical hyperparameters, such as layer count, neuron count per layer, learning rate, and batch size. Utilizing a diverse dataset comprising DNA sequences fromtwo distinct groups: patients diagnosed with breast cancer and a control group of healthy individuals. The model showcased remarkable performance, with accuracy, precision, recall, F1-score, and area under the curve metrics reaching 0.871, 0.872, 0.871, 0.872, and 0.95, respectively, outperforming previous models. These findings underscore the significant potential of DL techniques in amplifying the accuracy of disease diagnosis and prognosis through DNA sequencing, indicating substantial advancements in personalized medicine and genetic counseling. Collectively, the findings of this investigation suggest that DL presents transformative potential in the landscape of genetic disorder diagnosis and management.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Aug 30 2023
Journal Name
Al-kindy College Medical Journal
Investigating the Effect of Genetic Polymorphisms of Deiodinase Type 2 on Levothyroxine Dose Requirements in Patients with Hypothyroidism
...Show More Authors

Background: Hypothyroidism is the most abundant thyroid disorder worldwide. For decades, levothyroxine was the main effective pharmacological treatment for hypothyroidism. A variety of factors can influence levothyroxine dose, such as genetic variations. Studying the impact of genetic polymorphisms on the administration of medications was risen remarkably. Different genetic variations were investigated that might affect levothyroxine dose requirements, especially the deiodinase enzymes.  Deiodinase type 2 genetic polymorphisms’ impact on levothyroxine dose was studied in different populations.

Objective: To examine the association of the two single nucleotide polymorphism (SNP)s of deiodinase t

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Gene Reports
Vitamin D receptor rs2228570 and rs1544410 genetic polymorphisms frequency in Iraqi thalassemia patients compared to other ethnic populations
...Show More Authors

Background: The genetic polymorphisms of vitamin D receptor (VDR) have an association with thalassemia development, additionally to the environmental elements that elicited the disorder in the genetically predisposed individuals. As well, VDR functions responsible for the regulation of bone metabolism, such its part in immunity. Aim: The sitting study intended to inspect the association between thalassemia disease and the genetic polymorphisms of VDR among the Iraqi population then compared these findings to other findings of thalassemia patients in other different ethnic populations. Materials and methods: The restriction enzymes Bsm-I and Fok-I were applied to determine the genetic polymorphisms frequencies of VDR by a Polymerase Chain Re

... Show More
View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Indian Journal Of Public Health Research & Development
The Relation between Some Genetic Traits (Ptc Tasting, Tongue Rolling, Earlobe Attachment and Dental Occlusion in Iraqi Adults
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Oct 06 2012
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

Publication Date
Mon Jul 31 2023
Journal Name
International Journal Of Sustainable Development And Planning
Monitoring and Prediction Functional Change of Land Uses Toward Urban Sustainability
...Show More Authors

Urban land uses are in a dynamic state that varies over time, the city of Karbala in Iraq has experienced functional changes over the past 100 years, as the city is characterized by the presence of significant tourist and socio-economic activity represented by religious tourism, and it occur due to various reasons such as urbanization. The purpose of this study is to apply a Markov model to analyze and predict the behavior of transforming the use of land in Karbala city over time. This can include the conversion of agricultural land, or other areas into residential, commercial, industrial land uses. The process of urbanization is typically driven by population growth, economic development, based on a set of probabilities and transitions bet

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Fri Nov 30 2018
Journal Name
Iop Conference Series: Materials Science And Engineering
Damage pattern scope prediction for well point dewatering on building foundations
...Show More Authors

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Surface Roughness after Turning of Duplex Stainless Steel (DSS)
...Show More Authors

Feed Forward Back Propagation artificial neural network (ANN) model utilizing the MATLAB Neural Network Toolbox is designed for the prediction of surface roughness of Duplex Stainless Steel during orthogonal turning with uncoated carbide insert tool. Turning experiments were performed at various process conditions (feed rate, cutting speed, and cutting depth). Utilizing the Taguchi experimental design method, an optimum ANN architecture with the Levenberg-Marquardt training algorithm was obtained. Parametric research was performed with the optimized ANN architecture to report the impact of every turning parameter on the roughness of the surface. The results suggested that machining at a cutting speed of 355 rpm with a feed rate of 0.07 m

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

This paper deals with prediction the effect of soil remoulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity
according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil remoulding due to actual pile driving. T

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Oct 01 2012
Journal Name
Journal Of Engineering
Prediction of Smear Effect on the Bearing Capacity of Driven Piles
...Show More Authors

This paper deals with prediction the effect of soil re-moulding (smear) on the ultimate bearing capacity of driven piles. The proposed method based on detecting the decrease in ultimate bearing capacity of the pile shaft (excluding the share of pile tip) after sliding downward. This was done via conducting an experimental study on three installed R.C piles in a sandy clayey silt soil. The piles were installed so that a gap space is left between its tip and the base of borehole. The piles were tested for ultimate bearing capacity according to ASTM D1143 in three stages. Between each two stages the pile was jacked inside the borehole until a sliding of about 200mm is achieved to simulate the soil re-moulding due to actual pile driving. The re

... Show More
Publication Date
Mon Dec 02 2024
Journal Name
Engineering, Technology & Applied Science Research
An Artificial Neural Network Prediction Model of GFRP Residual Tensile Strength
...Show More Authors

This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperatur

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref