Abstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization of critical hyperparameters, such as layer count, neuron count per layer, learning rate, and batch size. Utilizing a diverse dataset comprising DNA sequences fromtwo distinct groups: patients diagnosed with breast cancer and a control group of healthy individuals. The model showcased remarkable performance, with accuracy, precision, recall, F1-score, and area under the curve metrics reaching 0.871, 0.872, 0.871, 0.872, and 0.95, respectively, outperforming previous models. These findings underscore the significant potential of DL techniques in amplifying the accuracy of disease diagnosis and prognosis through DNA sequencing, indicating substantial advancements in personalized medicine and genetic counseling. Collectively, the findings of this investigation suggest that DL presents transformative potential in the landscape of genetic disorder diagnosis and management.
In this research we prepared nanofibers by electrospinning from
poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission)
was studied and found to be at 772 nm, several process parameters
were such as concentration of TiO2 , and the effect of distance from
nozzle tip to the grounded collector (gap distance). The result of the
lower concentration of, the smaller the diameter of nanofiber is.
Increasing the gap distance will affect nanofibers diameter
Undesirable behaviors among students are consider one of the danger problems threating societies and educational and scientific institutions of countries because its one of the way to express aggression , so the instructors consider one of the most important people could be trust their evaluation and logical view , therefore the present research aimed to :
- Recognize undesirable behavior in students of University by the view of their instructors
- Measure the level of undesirable behavior in students of university by the view of their instructors
- Recognize more common undesirable behavior in students of University by the view o
Nowadays, it is quite usual to transmit data through the internet, making safe online communication essential and transmitting data over internet channels requires maintaining its confidentiality and ensuring the integrity of the transmitted data from unauthorized individuals. The two most common techniques for supplying security are cryptography and steganography. Data is converted from a readable format into an unreadable one using cryptography. Steganography is the technique of hiding sensitive information in digital media including image, audio, and video. In our proposed system, both encryption and hiding techniques will be utilized. This study presents encryption using the S-DES algorithm, which generates a new key in each cyc
... Show MoreThis study was done to investigate the impact of different nanoparticles on diesel fuel characteristics, Iraqi diesel fuel was supplied from al-Dura refinery and was treated to enhance performance by improving its characteristics. Two types of nanoparticles were mixed with Iraqi diesel fuel at various weight fractions of 30, 60, 90, and 120 ppm. The diesel engine was tested and run at a constant speed of 1600 rpm to examine and evaluate the engine's performance and determine emissions. In general, ZnO additives' performance analysis showed they are more efficient for diesel fuel engines than CeO. The performance of engine diesel fuel tests showed that the weight fraction of nanoparticles at 90 and 120 ppm give a similar performance,
... Show More