Renewable energy resources have become a promissory alternative to overcome the problems related to atmospheric pollution and limited sources of fossil fuel energy. The technologies in the field of renewable energy are used also to improve the ventilation and cooling in buildings by using the solar chimney and heat exchanger. This study addresses the design, construction and testing of a cooling system by using the above two techniques. The aim was to study the effects of weather conditions on the efficiency of this system which was installed in Baghdad for April and May 2020. The common weather in these months is hot in Baghdad. The test room of the design which has a size of 1 m3 was situated to face the geographical south. The test room is thermally insulated and connected to a solar chimney which generates a convection current to draw the air out of the room through a heat exchanger. The heat exchanger was submerged in a water tank of 2 m length, 1 m width and 1 m height. It was also covered with a layer of soil mixture with a thickness of 10 cm. The experiment simulates the natural conditions of a shallow water surface, connected to the room from the other side. The study results revealed that the air temperature inside the test room was lower than that of the ambient air outside. Pearson correlation coefficient showed that there was a strong direct relationship between solar radiation, temperature and wind speed from one side and the cooling efficiency from the other side. Also, there was a negative correlation between relative humidity and cooling efficiency.
In this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these
... Show MoreIn this work, an efficient energy management (EEM) approach is proposed to merge IoT technology to enhance electric smart meters by working together to satisfy the best result of the electricity customer's consumption. This proposed system is called an integrated Internet of things for electrical smart meter (2IOT-ESM) architecture. The electric smart meter (ESM) is the first and most important technique used to measure the active power, current, and energy consumption for the house’s loads. At the same time, the effectiveness of this work includes equipping ESM with an additional storage capacity that ensures that the measurements are not lost in the event of a failure or sudden outage in WiFi network. Then then these measurement
... Show MoreAutonomous systems are these systems which power themselves from the available ambient energies in addition to their duties. In the next few years, autonomous systems will pervade society and they will find their ways into different applications related to health, security, comfort and entertainment. Piezoelectric harvesters are possible energy converters which can be used to convert the available ambient vibration energy into electrical energy. In this contribution, an energy harvesting cantilever array with magnetic tuning including three piezoelectric bimorphs is investigated theoretically and experimentally. Other than harvester designs proposed before, this array is easy to manufacture and insensitive to manufacturi
... Show MoreDecolorization of red azo dye (Cibacron Red FN-R) from synthetic wastewater has been investigated as a function of solar advanced oxidation process. The photocatalytic activity using ZnO as a photocatalysis has been estimated. Different parameters affected the removal efficiency, including pH of the solution, initial dye concentration and H2O2 concentration were evaluated to find out the optimum value of these parameters. The results proved that the optimal pH value was 8 and the most efficient H2O2 concentration was 100mg/L. Toxicity reduction percent for effluent solution was also monitored to assess the degradation process. This treatment method was able to strongly reduce the color and toxicity of reactive red dye-238 to about (99 an
... Show MoreThe performance of single and two stage solar concentrator were studied ' " The ratio of the primary to the secondary mirrors diameter is taking to be 0.5, depending on the theoretical calculation for the accumulated energy by the concentrator with ratio between 0.0 to 0.9. The design of the systems were designed and examined by using a ray-tracing program. The efficiency of the single and the two stage concentrators are calculated and compared with and without cooling systems.
High frequencies of multidrug resistant organisms were observed worldwide in intensive care units which is a warning as to use the only few effective antimicrobials wisely to reduce selective pressure on sensitive strains.
The aim of the current study is to asses the compliance of the currently followed antibiotic prescribing pattern in the intensive care unit in an Iraqi hospital with the international guidelines.A cross-sectional study was done in the intensive care unit (ICU) of the Surgical Specialties Hospital, Medical City in Bagdad from the 30th of November 2011 to the 5th of May 2012.Patients were followed until they were discharged or died to see any change in condition, response to drugs, devices u
... Show MoreAir pollution from various sources is one of the most serious environmental problems, especially after pollutants are deposited on the surface of the soil and leaves of the plants and then transferred to the rest of the plant and entering food chains. The present study was conducted to determine the effects of air pollution on different biochemical parameters in Eucalyptus sp. and calculation the Air Pollution Tolerance Index. The selected plant leaves were collected from five sites, four of them within the city of Baghdad, namely Al-Jadriya, Al-Andlous, Al-Doura and close to the private generators to represent the urban areas and Abu Ghraib site to represent the rural area. The leaves were taken on a seasonal basis for the period from Octo
... Show MoreIn this study, the effect of the thermal conductivity of phase change material (PCM) on the performance of thermal energy storage has been analyzed numerically. A horizontal concentric shell-and-tube latent heat thermal energy storage system (LHTESS) has been performed during the solidification process. Two types of paraffin wax with different melting temperatures and thermal conductivity were used as a PCM on the shell side, case1=0.265W/m.K and case2=0.311 W/m.K. Water has been used as heat transfer fluid (HTF) flow through in tube side. Ansys fluent has been used to analyze the model by taking into account phase change by the enthalpy method used to deal with phase transition. The numerical simulatio
... Show MoreAl-Yusifia river was assessed at three sampling stations with study period from Autumn 2010 to the end of Summer 2011. The present investigation was carried out on diversity of fungi and bacteria from Al-Yusifia river, Baghdad city. During the study, a total of 12 fungal genus and 6 bacterial genus were isolated during the year seasons. The dominant fungus at the three stations were Penicillium sp., then Rhizopus and Trichophyton megninii while the dominant bacteria was Escherichia coli and Klebsiella sp.
The higher
... Show More